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0 Introduction

POUR PLUS TARD, FLEMME

Salut, moi c’est Quentin Gallien, je suis actuellement en MA2 de physique
en me spécialisant en astrophysique et j’ai pris la liberté de vous faire un petit
résumé du cours de thermodynamique de Mr Bréchet. Du coup, je me suis
occupé cette fois ci de tous les chapitres. J’espere que ce document a pu vous
aider et vous servir dans votre apprentissage de la matiere. Si vous avez des
critiques sur celui-ci / vu des erreurs / remarqué des imprécisions... n’hésitez
pas a me contacter par mail a ’adresse quentin.gallien@epfl.ch, ou méme par
whats’app au numéro +33695641641. So, Good Luck Have Fun!


mailto:quentin.gallien@epfl.ch

1 Systeme thermodynamique et ler principe

Avant de commencer, il est bon de rappeler que la physique est en charge de
décrire les phénomenes naturels, ¢’est donc une science décrivant les phénomenes
réelles. Vous pouvez donc parfaitement utiliser vos expériences personnels afin
de vous représenter les phénomenes que nous allons étudier dans ce cours.

1.1 Les systemes thermodynamiques

Pour rappel, un systeme physique est I’ensemble de la matiere et du rayonnement
contenu dans une région de I’espace délimité de I’environnement par une enceinte
(pas forcément physique). Un systéme peut étre:

e Ouvert: permet I’échange de matiere avec I’environnement
e Fermé: ... l'inverse

e Diatherme: permet échange de chaleur avec I’environnement

Adiabatique: ... 'inverse
e déformable: ... c’est dans le nom, permet variation de volume

e isolé: pas d’interaction avec I'’environnement

en ce qui concerne les parois de ces systémes, c’est vraiment pareil en fait.
Notons tout de méme qu’une paroi perméable peut laisser passer de la matiere
(# impermaéable).

1.2 Quelques définitions importantes

e Echelle microscopique : échelle des atomes, particules, ions... (en gros
c’est petit)

e Echelle macroscopique : échelle ou la matiére constitue un milieu con-
tinu: un humain, une fourmi, une planete ... en gros c’est grand

e Systéme ouvert : I'enceinte du systeme permet un échange de matiere
avec ’environnement, en opposition & un systéme fermé.

e Systéeme adiabatique : pas d’échange de chaleur entre le systeme et
I’extérieur.

e Systéme isolé : le systéeme ne permet pas d’interactions avec I’extérieur
(pas d’échange d’énergie ni de matiére permis avec l'extérieur).

e L’état d’un systéme : caractérisé par ses propriétés physiques et décrites
par ses variables d’état.



e Variables d’état : wariables d’état {X1,Xs,...} des fonctions d’état

1.3

F(X31,X5,...) servant & décrire une propriété physique. Ce sont des
parametres mesurables qui rendent compte de I’état du systéme. par ex-
emple: la température, pression, volume, quantité de matiere...

Processus de changement d’état : Interaction entre le systéeme et
I’environnement pouvant étre mécanique, thermique (transfert de chaleur)
ou chimique (transfert de matiere).

Quelques notions mathématiques :

Dérivée partielle :

or _Alalclgo Ax

resp. y (1)

On pourrait le définir comme: dériver une fonction par rapport a une
variable (ici x) en considérant les autres comme des constantes.

On définit le gradient de f(x1,x2,...,x,) comme V[ tel que :

vf= |5 e)

Différentielle de f(z,y) :

@10, ) = 30 L2 t0) g, 3

Dérivée temporelle : avec f(z1,2a,...,2n) = f(x1(t), z2(t), ..., xn(t)):

df(x1, T2, ..., n) " Of (21, T2, .y ) d;
dt N ; Ox; dt (4)

Le multiplicateur de Lagrange :

Prenons une fonction & plusieurs variables f(x1, s, ..., ,) et on cherche &
connaitre ses extremums. Dans le cas ou toutes les variables de la fonction
son indépendantes entre elles, il suffit de chercher les points ou le gradient
est nul.

Cependant, lorsque les variables dépendent les unes des autres, cette
méthode devient caduque. Dans ce cas, on peut utiliser la méthode du
multiplicateur de Lagrange pour prendre en compte ce qu’on appelle
les contraintes du systéme.



Une contrainte est une équation g;(x1,za,...,z,) = 0 qui doit étre satis-
faite par les variables de la fonction dont on cherche 'extremum.

La méthode du multiplicateur de Lagrange permet de prendre en compte
ces m contraintes en introduisant des coefficients A1, As, ..., \,,, associés
a chaque équation de contrainte. Ces A sont des multiplicateurs de La-
grange. Ensuite, on définit une nouvelle fonction L appelée fonction de
Lagrange tel que :

L($17£L'2, ey Ty )\1>>\27 7)\m) = f(xlvx% 7xn)+
>\191($17$27 71‘%) + )\292(371"1:27 "'axn) + ...+ >\mgm(x171‘2’ 7$n) (5)

La fonction de Lagrange est une fonction qui combine la fonction ini-
tiale f(x1,x9,...,2,) et une combinaison linéaire des fonctions g;. En-
suite, on calcule le gradient de la fonction de Lagrange et on cherche ou
celui-ci s’annule pour trouver les points ou la fonction initiale est extréme
sous les contraintes données. Il est important de notre que la contrainte
Agi(x1,x2, ..., x,) = 0 afin de pouvoir trouver les extremums de la fonction
f sans altérer ses propriétés.

Par exemple, on veut trouver le maximum de la fonction f(zq1,z2) =
x1 + a9 sous la contrainte g(z1,z2) = 23 + 22 = 1.

Tout d’abord, formons la fonction de Lagrange :

L(z1,m2,A) = f(21,32) + Ag(a1,22) = 31 + 22 — Mai + 25 — 1)
Ensuite, calculons le gradient de L :
VL= (5, 25, 8%) = (1—2x2y, 1—2Xx9, 2 + 23— 1)
On cherche les points qui annulent le gradient :
1—-2\r; =0, 1-2\x9=0, zi+azi—-1=0

En résolvant ces équations, on a x1 = x5 = % et A=

a8

Par conséquent, le point (x1,x9) = (%, %) maximise la fonction

f(x1,m5) = 21 + 2 sous la contrainte g(x1,rs) = 22 + 23 = 1.

1.4 Grandeurs :

Une grandeur extensive est une grandeur (X) dont la valeur pour un systéme
thermodynamique composé de plusieurs sous-systemes (X;) est égale a la somme
des valeurs correspondant & chaque sous systémes (donc X = > X;). On y
retrouve par exemple la quantité de matiere N = N; + N,, la masse M,



la quantité de mouvement P, le Moment cinétique L, ’énergie F et le
volume V. Cela signifie que si vous avez deux systemes identiques, la grandeur
extensive totale est la somme des grandeurs de chaque systeme individuel. Par
exemple, la masse, le volume et la quantité de matiere sont des grandeurs ex-
tensives. Pour faire plus simple, pour déterminer si une grandeur est extensive
ou intensive, on se représente ce qui advient de cette grandeur lorsque la taille
du systéme double (ex: volume). Si la grandeur est extensive, sa valeur double,
alors que si elle est intensive, sa valeur reste inchangée (ex: pression).

Une grandeur densitaire est une grandeur extensive divisée par le volume
ou la masse du systeme.

Une grandeur intensive est conjuguée a une valeur extensive, en d’autre
terme, c’est la dérivée de 1’énergie par rapport a 1’'une de ces valeurs.
Remarque : une valeur intensive est une grandeur physique qui ne dépend pas
de la quantité de matiere ou de la taille du systeme.

Un systeme est homogeéne si ses fonctions d’état scalaires ne dépendent pas
de la position dans le sous systeme. Il est uniforme si c’est des fonctions d’état
vectorielles.

1.5 Processus:

un systeme thermodynamique peut interagir avec I’environnement au travers de
processus qui changent son état. Ces processus peuvent étre mécaniques via
une déformation, thermiques via un transfert de chaleur ou encore chimiques
via un transfert de de matiere.

1.6 Equation bilan:

L’équation bilan décrit 1’évolution d’une fonction d’état extensive F' dut au
courant Ir décrivant le transfert de la fonction d’état F de 'environnement au
systeme, ainsi que la source X décrivant la variation de la fonction F' dans le
systeme.

F=Ip+Y%Yp (6)

1.7 Premier principe de la thermodynamique

La premieére loi de la thermodynamique s’énonce comme:

”Pour tout systéme, il existe une fonction d’état scalaire et extensive E appelée
énergie. Si le systéme est isolé, alors ’énergie est conservée.”



Dans un systéme isolé on a £ = 0 et dans un systéme ouvert on a
E=P* 1 Iy+Iog+1Ic=1I5+%p (7)

avec P Iy, Ig, Ic respectivement les puissances extérieures (ex: liées aux
énergies potentielles et & I’énergie cinétique du systéme), le courant mécanique,
de chaleur et de matiere. Pour rappel, dans un systéme fermé on a Io = 0,
dans un systéme adiabatique on a Ig = 0 et pour un systéme rigide (c’est
a dire qui ne varie pas en terme de volume)on a Iy = 0.

En ce qui concerne le moment cinétique L, dans un systéme isolé ou a
L = 0 mais dans un systéme en interaction L = M <t avec M ®* le moment
de force extérieur tout comme en mécanique.

1.8 Energie interne

En reprenant notre équation , on peut réécrire,
E=P> 4 Iy + I+ Ic (8)
S’il existe un référentiel ou le systeme est au repos, alors on peut écrire:
E=U+ P (9)

Avec U I’énergie interne qui ne dépend que de I’état initial et final du systeme.
Dans un systeme isolé, on a alors bien U = 0, mais aussi que la puissance
extérieure est nul alors P¢** = ( dans ce cas, le premier principe (eq, devient:

E=1Iy+Io+Ic (10)
Il est alors possible de définir :
Le travail : Wiy = [T oW = [V Pyt
La chaleur : Q;; = [/ 6Q = [/ Iqdt
Le travail chimique: C;_,; = fif 6C = ftif Icdt
Dans un systeme ouvert on a alors :
AUy =Wisr + Qiss +Cisg (11)
Et dans un systeme fermé, nous pouvons écrire cette équation sous la forme:

AU =06W +6Q =Tds — pdV (12)

Ou la seconde partie de ’équation sera expliqué dans le prochain chapitre.

Petit conseil, rappelez vous de vos cours de mécanique. Beaucoup de systéemes
thermodynamiques sont similaires et font appel a vos connaissances de votre
cours de Physique 1.



2 Entropie et 2eéme principe

2.1 Principe 0 de la thermodynamique

Les grandeurs intensives représentent des propriétés phénoménologiques (ob-
servables directement ou mesurables & partir de ’expérience) comme la température
T, la pression p ou le potentiel chimique p qui sont tres souvent utilisés.

Le principe zéro de la thermodynamique est tres logique et dit que ” Si deux
systemes sont en équilibre avec un troisieme, alors ces deuxr systémes sont en
équilibre entre eux”. Un équilibre thermique est atteint lorsque les températures
sont égales, un équilibre mécanique lorsque les pressions sont égales, et un
équilibre chimique lorsque les potentiels chimiques sot égaux.

Une loi extrémement utile en thermodynamique est la loi des gaz parfaits:
pV = NRT (13)

olt P est la pression [Pa], V' le volume [m?], N la quantité de matiere [mol],
R = A, kp la constante universelle des gaz parfaits [J - K~! mol™!], T la
température [K|, N le nombre de particules et kp la constante de Boltzmann.

La pression est définie comme l'intensité de la force exercé par unité de sur-

. ext
face, c’est a dire pot = 4E-— > 0.

2.2 Second principe de la thermodynamique: L’entropie

Afin de caractériser les transferts de chaleur @, il faudra utiliser une grandeur
extensive appelée 'entropie S qui décrit les transferts de chaleur par unité de
température [J - K~!]. Il est alors possible de se représenter I'entropie comme
le niveau de désordre dans le systeme.

Le Deuxiéme principe nous dit que dans un systéme adiabatiquement
fermé: tout processus s’effectue avec un accroissement de l’entropie. On dit
alors qu’il y a production d’entropie.”

L’entropie satisfait 2 conditions: ’entropie est une fonction monotone non
décroissante du temps dans un systeme adiabatiquement fermé, alors: S =
s = 0 avec Xg le source d’entropie. Pour un systeme diatherme, on ajoute
le courant d’entropie Ig, donc S =g+ I
Dans un systeme isolé, [’entropie est maximale lorsque le systéme est a [’équilibre.

I’évolution d’un systeme est réversible si I’équation thermodynamique qui
la décrit est invariante par renversement du temps, sinon elle est irréversible.
Le renversement du temps est transformation fondamentale T qui envoie le
temps sur son opposé: T :t — —t. Le renversement du temps est un processus

10



satisfait la condition d’évolution du deuxiéme principe: T(Xg) > 0. Un
processus est réversible si X g = 0 et est irréversible si g > 0.

2.3 Systemes simples

Un systeme simple est un systéme homogene ayant ses propriétés intensives
identiques en tout point dont ’état est déterminé par ’entropie globale S. On
fait les hypotheses que les déformations et les transferts de matiere sont lents et
ne provoquent pas de variation de 1’énergie cinétique du systeéme. Les systemes
sont décrits dans la section [l

On rappelle que les variables intensives sont les fonctions d’état con-

jugués aux variables intensives, c’est a dire: la température T' = g—g , la pression

p= fg—g et le potentiel chimique pyg = aaTUA'

On peut définir la variation temporelle de ’énergie interne comme:

U=TS - PV + Z 11aNa (= Py + Ig + Io systéme ouvert simple)  (14)
A=1

On notera juste ici 'équation bilan de I'entropie: S = ITQ + Xs
Il est de plus possible d’écrire le courant d’entropie lors d’un transfert de
chaleur réversible comme :
Is = fo (15)
T

Gardez bien en téte que les systémes thermodynamiques sont en réalité sem-
blables a des systémes mécaniques et reprennent souvent les mémes concepts.

La suite de ce chapitre dans le cours de Mr S. Bréchet explicite beaucoup
de systémes pouvant étre trés utiles & analyser (& partir de la slide 37) mais qui
n’a je pense pas sa place dans ce résumé et sera alors laissé a la discrétion de
toi cher lecteur!

11



3 Thermodynamique de sous systemes simples

La thermodynamique des systemes simples ne permet pas de décrire des trans-
ferts irréversibles de chaleur et de matiere et des déformations irréversibles.
Nous devons alors diviser le systeme en sous systemes simples qui sont car-
actérisées par leur paroi comportant certaines caractéristiques. Leurs états sont
définis par les variables d’état, 1’évolution temporelle est caractérisée par les
fonctions d’état et les déformations et transferts sont décrits par les courants et
les puissances.

Avant de commencer & étudier les parois, nous vous conseillons de revoir
rapidement la section qui donne les définitions nécessaires.

3.1 Paroi fixe, diatherme, imperméable

En premier lieu, il est possible de se représenter ce systéeme grace au schéma de
la figure [T}

@ ©)

I2—>l

Figure 1: schéma d’un systéeme a paroi fixe, diatherme et imperméable

Rappelons tout d’abord que 1’énergie interne ainsi que l’entropie sont des
variable d’état extensive donc S = S1 + S5 (resp U) ou 1 et 2 désignent les sous
systemes correspondants. Le systeme étant isolé, U = 0. Dans chaque sous
systemes, il est alors possible de noter:

U(S1) = Ti(S1)S1 = Iczgﬁl = 1(12»2 (resp 2) (16)

et apres quelques calculs simples (voir slides 11-13 pour précisions mais il

est bin de le retrouver par sois méme au moins une fois), il est alors possible de
trouver:

oS 1 1
ou;  Ti(Up) Ta(Us)
Cela montre alors qu’a I’équilibre, les températures des deux systemes doivent
étre identiques. De plus, La condition d’évolution du deuxieme principe im-
plique que le transfert de chaleur dans un systéme isolé ait lieu du sous-systeme
le plus chaud au sous-systeme le plus froid.

=0 — Tl(Ul) :TQ(UQ) (17)

12



Pour ce systeme, il est possible d’écrire la Source d’entropie comme:

1 1 2—1
s = (T1(S1) - T2(S2)>IQ - 18)

Et au voisinage de 1’équilibre thermique, la source d’entropie doit étre de la
forme quadratique, soit:

1 1 2 KA
Zs=to(gsy nen) 70 S mEomes O

Ou k est la conductivité thermique, A est I’aire de la paroi et [ est I’épaisseur
de celle-ci. On en déduit alors une loi discrete appelée la Loi de Fourier:

/{% (T1 (S )Tz(sz)) (20)

Pour les autres systemes présentés au cours, nous nous en tiendrons a relever
les points importants sans faire tout un descriptif comme dans la section précédente.

3.2 Paroi mobile, diatherme, imperméable

Le systeme dont nous parlons ici peut étre représenté par la figure

15_”4

>~ Py

2—1
PW ]

Figure 2: schéma d’un systeme a paroi mobile, diatherme et imperméable

On rappelle qu’'une paroi imperméable veut dire qu’elle ne permet pas d’échange
de matiere, alors I = 0. Nous avons néanmoins des déformations et des trans-
ferts de chaleur, pouvant influer sur I’énergie interne de chaque sous systemes, ce
qui ce traduit pour un systéme fermé (conservation de I’énergie interne) comme
ici par ’équation suivante:

PI}V—>2 _,'_Ié—ﬂ - _ I%V_ﬂ _ 622—>1 (21)

On rappelle aussi que 'on peut écrire U=T18— pV = Pw — Ig pour ce
systeme (cf eq14)) .

13



On peut aussi isoler la puissance mécanique P21 = —p; (S, Vl)Vl (resp 2).
Apres quelques calculs que vous pourrez retrouver slides 24-25 du cours, nous
trouverons alors que:

a8 1

v W(m(m, Vi) — p2(Us, V2)) (= 0 a I'équilibre) (22)

Ce qui nous prouve alors bien que ’équilibre mécanique se traduit bien par
le fait que p1 (U, V1) = pa(Ua, V2).

La source d’entropie peut ainsi s’écrire comme:

1

Ne=8=—-
o T(Uy, Vi)

(pl(Sl,V1) —p2(52,V2))Vl >0 (23)

et en utilisant cette équation et le second principe de la thermodynamique il
vient alors qu'une compression dans un systeme isolé doit s’effectuer par le
sous-systeme avec la plus grand pression sur le sous-systeme avec la plus petite
pression. Au voisinage de I’état d’équilibre mécanique, nous avons alors
(comme dans la partie précédente):

1

2 .
Y =Aw (p1(51,V1)—P2(52,V2)) =&V >0 Aw = m

>0 (24)
d’ou on tire la loi de Stokes:
pl(Slavl) 7p2(523‘/2) :6‘/1 (4) p(S,V) 7pert(Semt7Vezt) :§V (25)
Ou € est le coefficient de frottement thermoélastique de la paroi

3.3 Paroi fixe, diatherme, perméable

Le systéme étudié dans cette partie peut étre représenté par la figure [4]

@ 1 ®
157! 4'—

—L
Ié_” ‘I '

Figure 3: schéma d’un systeme a paroi mobile, diatherme et imperméable

14



Précisons que le systeme globale est fermé et isolé. Nous noterons que étant
donné que la paroi est fixe, nous avons ici que Pj;,;”” = 0 et la paroi perméable
nous dit que N; = —Ns.

Nous pouvons écrire I’équation bilan de ce systéeme comme:

. Il—>2
Ni=L+Xg=I""2= ¢ ) (resp 2) (26)

p1 (S, N1
Ainsi par le premier principe de la thermodynamique, il est possible d’écrire
la variation de I’énergie libre U comme:

Ui(S1,N1) = T(Sy, N1)IE! + pa(Sy, No) It = 1570 + 1870 (27)

On peut alors noter la dérivée temporelle de ’entropie

d:
S T

ﬁ(ﬂz(SQ,Ng) —ul(Sl,Nl))le (28)

Par ailleurs, selon le second principe de la thermodynamique, ’entropie doit
oS

étre maximale a 1’équilibre, alors an; = 0 qui est satisfait lorsque up (U1, N1) =
w2 (U, No), alors I’équilibre du systéme requierent que les potentiels chimiques
des sous-systemes aient la méme valeur a 1’équilibre chimique. Ensuite, comme
dans les précédentes sous parties, en calculant la variable ¥ g, nous pouvons en
déduire que la condition d’évolution du deuxieme principe implique que le trans-
fert de matieére ait lieu du sous-systéme avec le plus grand potentiel chimique
vers le sous-systeme avec le plus petit potentiel chimique.

Apres quelques calculs, nous trouvons rapidement que au voisinage de I’équilibre

chimique, on trouve:

ES:AC [LQ(SQ,NQ)*/Ll(Sl,Nl) ’ >0 Ac:FiA (29)
IT(S1,N1)
Ou nous trouvons alors la loi de Fick (qui est une loi discrete:
2—1 A
I :FT(,UQ(SQ’NQ) _M1(515N1)> (30)

Avec F le coefficient de diffusion de la paroi.

3.4 Paroi mobile, diatherme et perméable

Le systéme étudié dans cette partie peut étre représenté par la figure |4l (Ouai
c’est la méme formulation que la partie d’avant mais je fais plus d’effort mdr)
Ici on a alors:
Ur(S1, Vi, N1) = T1(S1, Vi, N1)Sy — pi (S, Vi, Nu)Va + pa (S1, Vi, N1)Ny (31)

1

Sl = m(Ul(Sl"/l,Nl)+P1(Sl7V1’N1)V1 —Ml(SthNl)Nl (32)
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Figure 4: schéma d’un systéeme a paroi mobile, diatherme et perméable

Ainsi, grace a I’équation [32| et quelques manipulations similaires, nous pouvons
trouver que pour que les conditions d’équilibre soient satisfaites, il faudrait nous
faudrait:

oS 08 oS

Lorsqu’un systéeme comme celui-ci est a I’équilibre, il est alors simultanément
a I’équilibre thermique, mécanique et chimique.

3.5 Applications

Regardons pour commencer un systéme constitué de 2 blocs superposés

L’énergie interne U est une fonction de la température T et du nombre
N de moles de matiere, on peut I’écrire comme U = CyT = 3NRT avec Cy la
capacité thermique isochore.

Un systeme est non simple si il n’existe pas de référentiel par rapport
auquel I’énergie cinétique de translation s’annule.

Par la définition de I’energie vu en cours de mécanique, on peut écrire que
E(Pl,Sl,Sg) = Pt = F™' .y, alors en utilisant de plus la dérivée tem-
porelle de ’énergie interne U =3NRT =F".v, on peut alors écrire le taux
d’accroissement de la température

FeXt . Vl E
SNR  3NR (34)

T

Rappelons que dans un systéme adia-
batiquement fermé, S = Xg = % > 0.

Regardons maintenant un systeme
constitué de 2 cylindres superposés
en rotation a des vitesses angulaires
différentes.

16  Figure 5: Schéma du montage con-
stitué de 2 cylindres



On pourra alors exprimer ’énergie du
systéeme comme

1
E(Ly,5,82) = §L1 w1 + U(S1,S2)

(35)
Avec L; le moment cinétique du cylindre
et wy la vitesse angulaire relatif du ler cylindre par rapport au second. En
utilisant la méme méthode que dans le premier exemple, on trouvera alors que
le taux d’accroissement de la température s’exprimera comme:

B xF)w B(Ly, 51, 8:)
N 3NR ~ 3NR

T >0 (36)

Le reste des applications utilisent des notions de mécanique ainsi que des
notions de thermodynamique expliqués plus haut dans ce document et
sera donc laissé a faire par I’étudiant.
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4 Potentiels en thermodynamique

4.1 Relations fondamentales

Dans ce chapitre, nous commencerons tout d’abord par vous donner quelques
relations fondamentales pour I’étude de la thermodynamique en prenant comme
point de départ I’équation

On releve alors la relation de Gibbs:

s
dU =TdS —pdV +»  p1adN4 (37)
A=1
On rappelle qu’on peut exprimer la température, la pression et le potentiel
chimique comme:

_ou U U
“a9s PTTav FATT oy

Ensuite en intégrant la relation [14] et apres quelques simples modifications,
nous obtenons la relation d’euler:

T (38)

T
U=TS—pV+ Y paNa (39)
A=1
Enfin, en dérivant cette équation et en la comparant & 1’équation il est
alors possible de trouver la relation de Gibbs-Duhem:

SdT — Vdp+ Y Nadpa =0 (40)
A=1

4.2 Transformations de Legendre

La transformation de Legendre permet de passer d’un potentiel thermody-
namique a un autre en utilisant la transformation de Legendre. En notant
Fonction d’état d’une variable extensive F(X) qui est strictement monotone
et dérivable (bijective et inversible). On note alors la grandeur intensive
conjuguée comie :

dF(X) F-G

x 0 Yex (41)

Ou Y (X) est la pente de la tangente de la fonction F(X) au point X. La tan-
gente ’axe des ordonnées a l’origine au point G. La transformée de Legendre
s’écrit alors:

G(Y) = F(X(Y)) - YX(Y) (42)

_OF(X1..)

Pour la suite, on notera Y; (X ...) = =5 ce qui simplifiera la notation.
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On défini ensuite la courbure:

2 2 —
gy? :_(;)X?) 1

4.3 Les potentiels thermodynamiques

En se rappelant des équations et il est possible de calculer ce que nous
allons appeler I’énergie libre F(T,V,{N4}) qui est la transformée de 1’énergie
interne U(S,V,{N4}) par rapport a ’entropie S. On & alors:

oU
F=U-2=8=U-TS 44
33 (44)

dF = —SdT —pdV + > j1adNa (45)

A=1
et on peut alors calculer les variables d’état comme:

oF oF oF

= = —— == — 4
S p A== 5 (46)

- or ov

De la méme fagon, on pourra définir une variable appelée Enthalpie H(S,p,{Na})
qui est la transformée de legendre de U(S,V,{N4}) par rapport au volume V.
On obtient alors:

oUu

dH =TdS + Vdp+ Y pradNa (48)
A=1

et on peut donc calculer les variables d’état comme:

_oH _%H __9H
~ a5 “op M7 o,
Enfin, on définira une variable appelée ’énergie libre de Gibbs G(T',p, {Na})

qui est la transformée de legendre de U(S,V,{N4}) par rapport au volume V
et a 'entropie S. On obtient alors:

T (49)

oUu oUu

dG = —SdT + Vdp+ »  padNa (51)
A=1

et on peut donc calculer les variables d’état ainsi:

oG, _ oG oG
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4.4 Equilibre de sous-systemes couplés a un réservoir

un réservoir (ou bain) peut étre compris comme un grand systéeme dont
les variables d’état qui les caractérisent restent fixes lorsqu’ils sont couplés a
un autre systeme. Par exemple, un réservoir de chaleur aura toujours une
température constante. Un systeme couplé a un réservoir de chaleur aura alors
une température d’équilibre égale a la température du réservoir. On peut con-
sidérer I'extérieur d’un systéme comme un réservoir.

En regardant quelques systemes spécifiques, nous donnerons ici les conclu-
sions auxquelles nous avons pu aboutir. En gros c’est un peu de 'étude de
cas du coup je vous conseillerai d’aller directement voir dans les slides si vous
voulez.

e Si un systeme rigide et diatherme est maintenu & température constante
a l'aide d’un réservoir de chaleur, 1’état d’équilibre mécanique entre ses
sous-systemes est celui qui minimise ’énergie libre du systeme.

e Si un systeme déformable et diatherme est maintenu a pression constante
a l'aide d’un réservoir de travail, et que les transferts de chaleur entre les
sous-systemes et avec le réservoir de travail ont lieu & entropie constante,
I’état d’équilibre thermique entre ses sous-systéemes est celui qui minimise
I’enthalpie du systeme.

e Si un systeme déformable et diatherme est maintenu a température et
pression constantes a l'aide d’un réservoir de chaleur et de travail, I’état
d’équilibre chimique entre ses sous-systemes est celui qui minimise I’énergie
libre de Gibbs du systeme.

e La chaleur fournie & un systéme maintenu anpression constante par un
réservoir de travail est égale a la différence d’enthalpie entre 1’état initial
et I’état final

e Le travail effectué sur un systéeme maintenu a température constante par
un réservoir de chaleur est égal & la différence d’énergie libre entre 1’état
initial et I’état final.

e L’apport énergétique de matiére fournie a un systéme maintenu a température
et pression constantes par un réservoir de chaleur et de travail est égal a
la différence d’énergie libre de Gibbs entre I’état initial et 1’état final.

4.5 Théoréme de Schwartz et relations de Maxwell

Premierement, le théoréeme de Schwartz nous dit que pour une fonction
(d’état) continue et dérivable f(x,y) dont les dérivées partielles sont continues
et dérivables, on a alors:

(53)
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Ensuite, en appliquant ce théoréeme aux potentielles thermodynamiques, on ob-
tient alors les relations de maxwell correspondantes. Par exemple, pour
Iénergie interne U(S, V) la relation de Schwartz et de maxwell correspondante
sont (respectivement):

0S5

TV

B (8U(S,V)) 0 <8u(S,V)) o WS V) _OT(S,V) (54)

v )~ s s av
Il est aussi possible d’utiliser le méme principe en utilisant les autres poten-

tielles thermodynamiques vu dans la section pour avoir d’autres relations.

Nous noterons simplement ici qu'’il existe une relation appelée relation cy-
clique qui est tres utile et se déduit de la méme fagon:
9x(y, z) Oy(x, z) Oz(x, y)
oz 0z Ox

— 1 (55)

Nous vous laisserons voir par vous méme les applications de cours directe-
ment dans les slides.

21



5 Calorimétrie
Les variables T', V', p et N peuvent étre liés entre elles gréace a 4 lois phénoménologiques:

e la loi de Boyle-Mariotte: pour T = cte et N = cte alors pV = cte

e la loi de Charles: a p = cte et N = cte alors % = cte

e la loi de Gay-Lussac: a V = cte et N = cte alors £ = cte

e la loi d’Avogadro: a p = cte et T' = cte alors % = cte
enfin, la loi phénoménologique peut alors se traduire par: ]’\’,—‘; = cte.

5.1 coefficients calorimétriques

Les coefficients calorimétriques sont des coefficients caractérisant la réponse
du systeme a un transfert réversible de chaleur. On défini alors la capacité
thermique isochore Cy représentant la chaleur a fournie pour augmenter
de 1K la température d’un volume V de matiere, le coefficient de dilatation
isobare «,, représentant ’augmentation du volume V dut a I’augmentation de T
et a p = cte et le Coefficient de compressibilité isotherme y; représentant
la diminution du volume V dut a 'augmentation de p et a T' = cte comme:

ST V) _ 19V(T,p)

_10V(T,p)
oT Ty aT

C:
v vV 0Op

XT = (56)

Si 'on écrit explicitement le courant de chaleur Iy et que l'on utilise les
relations précédentes, on obtient alors que:

Io=CyT 22Ty (57)
XT
Nous pouvons alors écrire la chaleur infinitésimale comme:
8Q = Igdt = TdS(T,V) = Cydt + ;LPTdV (58)
T

Il est intéressant de remarquer les quelques relations suivantes:

LU _ 98T _oH
- ITlv P or  9Tlp
Ou Cy et C, sont les capacités thermiques isobares et isochores et qui

ont la dimension d’une entropie. On introduit de plus la capacité thermique

molaire ¢, = C—]\‘,’ (resp p) et la capacité thermique massique c,* = Cv (resp

M
p)-

Cy (59)
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5.2 Troisieme principe de la thermodynamique

Nous commencerons par énoncer le troisieme principe de la thermody-
namique: Lorsque la température d’un systéme homogéne formé d’une
seule substance tend vers le zéro absolu, température qui ne saurait
&tre atteinte, son entropie tend vers zéro.

Cela se traduit par: limy_,o S(T, V (oup) = 0, or 'entropie peut étre traduit
décrite par 1’équation suivante pour dV = 0 (ou dp = 0):

T T T !
6Q dr
S(T,V) = / dAS(T", V (oup) = / o / Cviomn o (60)
0 0 0
ce qui nous donne alors par le troisieme principe que:

7111411)10 CV(oup) =0 (61)

5.3 Relations de Mayer et de Reech

les relations de Mayer et de Reech sont des relations liant la capacités
thermiques isochore Cy et la capacités thermiques isobare C),.

On peut définir le volume infinitésimal ainsi que la chaleur infinitésimale
comme:

AV = a —pVdT — xrVdp  6Q = CydT + 22Tdv (62)
XT

avec quelques transformations supplémentaires, on trouve alors la relation
de mayer:

«
Cp—Cy = LTV (63)
XT
Ainsi que la relation de Reech:
C
Yp _XT (64)
Cv  xs

puis on défini le coefficient gamma qui est le indice adiabatique ou le
coefficient de Laplace que 'on écrit alors comme:

v G 35(T,p)(3S(T,p))—1:xl (65)

OV 8T 8T Xs
ou on aura défini le coefficient de compressibilité isentropique xys =
—%%ﬁ’p). On notera aussi que quand le systeme est indilatable et incom-

2
pressible (:—;) ~ 0, on aura alors que C = C), = CYy.
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5.4 Capacité thermique des solides et gaz parfaits

Nous commencerons par énoncer la loi de Dulong et Petit qui nous dit que a
température suffisamment élevée, la capacité thermique C de nombreux
solides est proportionnelle a la quantité de matiére et indépendante
de la température, ce qui se traduit par:

U=CT=3NRT (66)
On notera aussi les relations suivantes qui sont valables pour les gaz parfaits:

dV = CydT  dH = CpdT (67)

5.5 Coefficients calorimétriques et entropie du gaz parfait

En utilisant les lois et relations que nous avons pu voir dans ce chapitre, nous
pouvons noter la capacité thermique isochore, isobare et I’enthalpie comme:

Cy =cNR Cp,=(c+1)NR>0 H=(c+1)NRT (68)

+1

Le coefficient gamma peut alors s’écrire v =
Nous pouvons remarquer plusieurs relations blen utlles dans certains systemes
spécifiques:

e Dans un processus isentropique & entropie constante (AS;_, s = 0) on
aura TVt = cte, p!=7T" = cte, pV" = cte

e Dans un processus isotherme on a que pV = cte
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6 Transition de phase

6.1 Phase et transition de phase

Il existe plusieurs phases de la matiere,
les plus connus sont bien évidemment
les états solides, liquides et gazeux, R
» 14 g <, Plasma

X
&
QO

mais il existe aussi des phases plus exo- A
tiques de la matiere comme le plasma,

>

les supraconducteurs ou les super- Gaz A
fluides.  Toutes ces phases ont des A "6,
propriétés physiques différentes. 11 est E“ Liquide
possible qu’un matériaux change de i;

phase suite a une transition de phase : ‘\6\(\@2\:‘\
(logique) qui traduit une instabilité Solide |# <

pour les conditions subis par le systeme.

Enthalpie d'un systéme

Figure 6: Schéma de transition de

6.2 concavité et convexité phase

des fonctions d’état
6.2.1 concavité de I’entropie

Il est possible de montrer que I’entropie S

est une fonction concave de U et V dans 'espace d’état (U, S, V). Il est possible
de le prouver en utilisant le premier et le second principe de la thermodynamique
(cf directement le cours). On obtient alors les conditions globales de la concavité
pour ’entropie comme:

S(U — AU, V) + S(U + AU, V) < 25(U, V) (69)

Cela vaut pour représenter S en fonction de U mais aussi de la méme fagon
pour représenter S en fonction de V.

pour décrire des transitions de phase, caractérisées par des discontinuités
des dérivées partielles des variables d’état U , S et V , il est nécessaire de
déterminer également les conditions locales de concavité de I’entropie S. Celles-
ci sont définies au voisinage d’un point de 'espace des états (U, S,V). Pour
calculer cela, on procede de la méme fagon que dans le paragraphe précédent et
on trouve alors les conditions locales de la concavité de I'entropie:

9*S(U,V) <0 9*S(U,V)
ouz ov?
ainsi que la courbure de Gauss de la surface S(U, V) (découlant de la con-
dition globale précédente:

<0 (70)

P2S(U,V) *S(U,V) (32S(U,V)>2 -

ou? ov? ouov (71)
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6.2.2 convexité de I’énergie interne

La courbure de la fonction d’état entropie S(U,V) & volume constant V' est
Popposé de la courbure de la fonction d’état réciproque énergie interne U (S, V)
a volume constant V' . Ces fonctions sont symétriques par rapport a la bissectrice
dans le plan (S,U).

En utilisant le relation de Gibbs et la différentielle de ’entropie, on trouve
alors la Condition locale de convexité de I’énergie interne a 1’équilibre:

ove BYE
ainsi que sa courbure de Gauss positive:

2 2
PUS.V) __,28(8.V) )

Q2U(S,V) 2U(S,V) (62U(S,V))2 73)

052 ov? aSov

6.2.3 stabilité et entropie
6.3 Stabilité de ’entropie

La stabilité d’'une quantité de matiere

dans un certain état dépend du signe sh stablilité locale
de la courbure de Uentropie S(U, V) par ‘
rapport aux variables d’état énergie in- |
terne U et volume V' dans l'espace des stable | instable
états (U,S,V). La stabilité de 1'état |
dépend du signe de la dérivée seconde .

de U'entropie par rapport a ses variables }
d’état. Dans la figure |7} le critere de sta- o ‘
bilité locale est donné par g;‘fz < 0 et

son critére de stabilité globale est donné Figure 7: Schéma de stabilité locale
par l'eq (74) ou la courbure globale est

négative ou nulle:

=

S(U - AU, V) + S(U + AU, V) < 28(U, V) (74)

Il peut aussi y avoir une coexistance
de phase si la courbure de l’entropie sh
par rapport a l’énergie interne est nulle
comme illustré dans la figure [9 ce qui
peut étre décrit par I’équation :

transition de phase

phase 2

phase 1

S(U,V) = AS(UL, V) + (1 = \)S(Us, V) e 4
(75) IV
avec A € [0.1] By 7

=Y

Figure 8: Schéma de coexistence lo-
cale de phase
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6.3.1 stabilité et potentiels ther-
modynamiques

La stabilité d’'une quantité de matiere

dans un certain état dépend du signe de

la courbure de ’énergie interne U (S, V') par rapport aux variables d’état entropie
S et volume V dans I'espace des états (U, S, V). Cela fonctionne exactement
comme ce que nous avons présenté a la partie précédente, mais cette fois on
écrit I’équation de stabilité:

U(S, V) =AU(S1, Vi) + (1 = NU(S2, V2) (76)

Lors de la transition de la phase
«a a la phase 8, nous avons alors que la A

- ! | phase 8
température et la pression sont constante: | coosbtoncedeplse | 3
£ a+p |
Lz————-‘x———)—%:—_—_—:—::: l_,
oUu(S,V) oU(S,V) L
T="—"""=cte p=—-——7>—-—>=cte 1 '
oS b \%4 | /’/ r !
I Y |
La convexité locale de 1’énergie ‘ h | -

interne nous indique que:

Figure 9: Schéma de coexistence lo-

0*U  oT T
- = = >0 et (78) cale de phase

952 9SS  Cy ~
0*U Op 1
—_— e = >

052 V. ksV — 0 (79)

De la méme maniere, il est aussi pos-
sible de décrire convexité locale de 1’enthalpie et de I’énergie libre ainsi
que la courbure de Gausss négative en passant par ces variables. De méme
pour la concavité locale de I’énergie libre de Gibbs et sa courbure de
Gauss positive.

On peut alors dire que Les potentiels thermodynamiques U (S, V), F(T,V), H(S, p)
et G(T',p) sont des fonctions convexes de leurs variables d’état extensives V' et

S et des fonctions concaves de leurs variables d’état intensives T et p.

Un petit résumé de cette partie peut étre fait grace au tableau

U %;}Ui convexe %Z% convexe
F 327}-21 concave gy; convexe
H | %gz convexe Gp2 concave
G ngfg? concave %;? concave
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6.4 Transitions de phase

Une phase est un état de la matieére qui occupe un sous-espace de ’espace
des états caractérisé par des propriétés physiques particulieres du systeme, noté
avec des lettres grecques. Une transition de phase est le passage d’'une
phase instable vers une phase stable du systeme en réponse a un processus.
On peut distinguer 2 types de transitions de phase selon la classification
d’Ehrenfest: les transitions du

. premier ordre caractérisées par des discontinuités des dérivées premieéres
de I’énergie libre de Gibbs G, donc V et S

. deuxiéme ordre caractérisées par des discontinuités des dérivées sec-
ondes de I’énergie libre de Gibbs G, donc de k7 et C),.

A température T et pression p,
I’état d’équilibre stable minimise G dans
Pespace (G, T, p). Dans I’espace de phase
(G, T,p,{Ny}), Vétat d’équilibre stable
minimise G et la phase stable est celle
dont p, est minimale avec Solide

Point critique

fa(T,p, {N}) = 3G(Tép—]\}jf\’a})

Point triple

Sur un diagramme de phase, comme
représenté sur la figure [I0] il est possible
d’observer 2 points particuliers: le point
triple qui est a la limite exacte entre Figure 10: Schéma de diagramme de
les états solide, liquide et gazeuz, puis le phase
point critique qui marque la fin de la
courbe de coexistence de phase entre les
états liquides et gazeux.

6.5 Chaleur latente

La chaleur latente est la chaleur fournie & la substance lors d’un processus a
température constante d’un état initial ¢ a un état final f : Q;—y = TAS;;.
Alors la chaleur latente de transition de phase (Q,_g)) est la chaleur
fournie lors d’une transition de phase a température constante. On note la
chaleur latente molaire:

Qo
lami) = 7yt = Tlsp = 50) (80)

ou S, = ]‘3—"‘ est ’entropie molaire (resp ). Vous pouvez vous représenter les
transitions de phase et I’évolution de la température en fonction de ’entropie
grace a la figure [T1]
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Figure 11: diagramme (T,S) représentant les transition de phase de 'eau

En se concentrant sur la coexistence de phase nous disant que po = pg, et
de méme pour leurs dérivées, on pourra alors trouver la relation de Gidds-
Duhem entre ces phases:

SodT — Vydp + Nodpe, =0 (81)

(resp B). Il serra alors possible d’écrire mathématiquement la pente de la courbe
de coexistence de phase (p,T):

dp  sg— Sa
dT_”uvaa

(82)

avec v, 3 les volumes molaires. On pourra alors réécrire la relation de Clausius-
Clapeyron comme:
d, l d, l
o _ st ot P _ g (83)
dT  T(v —vs) dr T(vg —v)
nous en profitons pour aussi définir la concentration molaire d’une sub-
stance A dans une phase a:

« NX - (0%
CA:E tq Az_:lCA:l (84)

Ainsi, il y a r — 1 variables indépendantes C¢% dans chaque phase a. Comme
il y a m phases, il y a donc m(r—1) variables indépendantes C'§ dans le systeéme.
Les condition d’équilibre chimique impose m — 1 contraintes sur les potentiels
chimiques, il y a alors r(m — 1) contraintes sur le systéeme. On trouve alors la
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régle des phases de Gibbs nous donnant le nombre de degrés de liberté
de notre systeme:
f=r—m+2 (85)

avec m le nombre de phases et r le nombre de substances dans notre systeme.

6.6 Gaz de Van Der Waals

Comme vu précédemment, un gaz parfait idéale peut étre décrit grace a la
célebre équation pV = NRT, mais la réalité est bien différente, c’est pourquoi
pour décrire un gaz réel on va plutot utiliser le modele du gaz de Van Der
Waals (VDW) qui se traduit par 1’équation:

2
(v+ %) (V — Nb) = NRT (86)
On rend compte des forces d’attraction entre les atomes et molécules décrites
par le parametre a > 0 ainsi que du volume occupé par ceux-ci grace au
parametre b > 0. On drvras alors aussi redéfinir I’énergie interne du gaz de
VDW comme la somme de ’énergie interne du gaz parfait U* et de I’énergie
d’interaction moléculaire aNn:

aN?
U=U"—aNn=U" - — (87)
1%
Ainsi on peut aussi écrire la pression du gaz de vdw comme p = p* — “é\'; et

son volume comme V = V* + Nb, ce qui nous permet de retrouver I’équation
en réécrivant ’équation d’état: p*V* = NRT.

30



7 Machines thermiques

7.1 Définitions et Rappels

e Machine ditherme : un systéeme constitué d’un fluide qui effectue un
transfert de chaleur entre deux bains thermiques et qui donne lieu a une
déformation ou vis versa.

e Cycle : correspond a un chemin fermé dans un diagramme. Lors d’un
cycle AY =0 avec Y une fonction d’état quelconque.

e Rappel : un processus adiabatique réversible est isentropique, mais un
processus adiabatique irréversible n’est pas isentropique

e Conventions de signe : Le travail et la chaleur qui entrent dans le
systeme sont positifs. Ceux qui sortent sont négatifs.

e Processus pour les variations de pression et volume :

— Expansion : augmentation du volume
— Contraction : diminution du volume
— Compression : augmentation de la pression
— Décompression : diminution de la pression

— Détente : augmentation du volume et diminution de la pression

7.2 Cycle de Carnot

Un cycle de Carnot est un un cycle réversible constitué de deux processus
isothermes et deux adiabatiques. On appelle une machine de Carnot une
machine diatherme constitué d’un gaz homogene dans un soufflet fermé mis en
contact avec deux sources & température constantes 7'~ et T+ fonctionnant selon
un cycle réversible de Carnot. Le diagramme d’un cycle de Carnot ressemble
donc & ce qui est représenté sur la figure

On rappellera que dans un processus adiabatique, on a @Q;—y = 0. Par
contre, dans les réactions isothermes, on aura:

QF = Qi = TH(ST — ST) (88)

Et comme nous sommes dans un systéme isolé et fermé, on aura AU =
W + @ = 0. Dans les cycles de Carnot, on notera que la variations d’entropie
AS =0.

On défini maintenant un cycle moteur comme un cycle ou la source chaude
fournit de la chaleur a un gaz qui en restitue une partie a la source froide et
utilise I'autre partie pour réaliser un travail sur I’environnement. De la méme
fagon, un cycle calorifique est un cycle ou I’environnement effectue un travail
sur un gaz qui extrait de la chaleur de la source froide (réfrigérateur) et apporte
plus de chaleur & la source chaude (pompe & chaleur).
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Figure 12: schéma d’un cycle de Carnot type

7.3 Processus réversibles pour le gaz parfait

variati , .. variati .
On rappelle que la variation d’énergie interne et la variation d’entropie
peuvent s’écrire dans un cycle comme:

AUi;=cNR(Ty —T,))  AH, ;== (c+1)NR(Tf—T;)  (89)

On peut donc dire que lorsque la température entre 1’état final et initial reste
constante alors la variation de ces deux variables sera alors égale a 0.

Lors d’un processus isotherme réversible, nous pourrons alors noter le
travail W;_,¢, la chaleur Q7 et la variation d’entropie AS;_,; comme:

f Vi g
W]Hf:*/ pdvszRT/ %Z*NRTlH%:*QIaf:*TAS[Hf

Vi i
(90)
Qroy =AUy — Wiy (91)
f Vi
_ [T pdV _ v _ Vi
ASI—>f—/i v —NR/Vi =N (92)

Ensuite, pour des processus isobare ou isochore, nous reprendrons les
définitions que nous venons d’utiliser ainsi que ’équation [89] afin de déterminer
certaines propriétés et résultats remarquables applicable aux processus com-
muns dans les cycles.
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7.4 Cycle de Carnot pour le gaz parfait

Nous avons vu dans la figure [I2] & quoi ressemblait un diagramme T,S mais il
est aussi possible de construire des diagrammes p,V par exemple. Il est donc
possible de calculer le rapport entre les pentes de ce diagramme. Pour cela, on
rappellera que la dérivée d’'une courbe correspond a sa pente au point ou elle
est évaluée. On peut alors poser le rapport des pentes:

aop(V, S op(V,T)\~1 C
(2050 (T _ Gy (93)
ov ov xs Cv
et nous utiliserons les équations présentés dans la section [7-3] pour mettre en
lien nos différentes variables et ainsi pouvoir connaitre la forme de la courbe du

diagramme que nous voulons représenter.

Dans un cycle moteur du diagramme pV, le cycle est orienté dans le sens
des aiguilles d’'une montre et au contraire, dans un cycle calorifique le cycle est
orienté dans le sens trigonométrique. On appelle machine monotherme une
machine qui n’échangeant de 1’énergie par transfert thermique qu’avec un seul
thermostat. Une machine monotherme motrice est impossible a réaliser.
De méme, il est impossible de construire une machine ditherme qui extrait
de la chaleur d’une source froide et restitue de la chaleur a une source chaude
sans qu’un travail soit effectué par ’environnement.

7.5 Rendement et efficacités

Afin de caractériser nos machines thermiques, nous allons alors définir le ren-
dement d’une machine ditherme fonctionnant selon un cycle moteur comme le
rapport du processus sortant et du processus entrant dans la machine, c’est a
dire: W Q .
1=-gr = grle i) = < (94
ol €t est efficacité de chauffage d’une pompe a chaleur ditherme fonc-
tionnant selon un cycle calorifique est définie comme le rapport du processus
sortant et du processus entrant dans la pompe a chaleur. De méme on peut
définir D’efficacité de refroidissement comme:
g:Qi:_Qi:lfJ (95)
w Q U
Nous allons encore donner ici quelques résultats utiles pour les cycles de
Carnot. Leur rendement, efficacité de chauffage et de refroidissement
sont alors:

T- T+ 1 T-
ne=1-—— %:ﬁ Rl (96)
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7.6 Cycle de Carnot endoréversible et théoreme de Carnot

Un Cycle de Carnot endoréversible est simplement un cycle de Carnot
irréversible. On définit le transfert irréversible de chaleur : Q¥ entre le
gaz & température maximale (resp minimal) 75" et la source chaude (resp froide)
A température TF. Aprés un temps At+ on peut écrire:

Att A
Qi:/ T5dt = IEAI = 5 (T* — TEAR) (97)
0

On notera bien évidemment la puissance mécanique |py | = —%. Afin de
maximiser la puissance mécanique de ce cycle de Carnot, nous pouvons trouver
les températures optimales TF et donc leur rendement maximal:

T+ TF T T-
=5 (1 gE)  me=1-2r=1-\5m (98)
0

Enfin la loi de Carnot nous dit que Le rendement 7 d’une machine ditherme
quelconque opérant entre une source froide a température T~ et une source
chaude & température T+ est inférieur ou égal au rendement nc du cycle de
Carnot réversible:

T
77<770=1—F (99)

Comme d’habitude, je vous encourage a aller voir dans les slides pour les
application de ce chapitre mais je ne pense pas que celles-ci ont leur place dans
un résumé comme celui-ci. Cela vous permettrai de bien comprendre comment
utiliser les différents principes abordés ici.
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8 Chimie et électrochimie

8.1 Potentiel et réactions chimique

Tout d’abord, une réaction chimique est une réaction chimique est une trans-
formation de la matiere au cours de laquelle les substances chimiques sont mod-
ifiées. Les substances chimiques initiales sont appelées les réactifs et les sub-
stances finales sont les produits, et I’on peut ’écrire comme cela:

Prenons une substance électriquement neutre A et son potentiel chim-
ique associé p4. Sans réactions chimiques, Ny4 est dut aux transferts de
matiere décrite par Pg, ce qui n’est pas forcément le cas dans un systéme avec
des réactions chimiques. On note fi4 le potentiel électrochimique d’une
substance A chargé électriquement.

Les coefficients stoechiométriques de la réaction chimique sont (Va1, Va2, Va3) =
(=2,-1,2). on défini I’avancement infinitésimal comme:

_dN; _aN, (101)

Va1 Var

d€a

L’équilibre est atteinte lorsque d§, = 0. On peut alors introduire le taux de
réaction Q, = £,. En gros, on pourra écrire la variation de la quantité d’une
substance A comme:

ANA = Veadéa  Na=» VeadQ (102)
a=1

a=1
On notera de plus les relations importantes suivantes:

T

Na(t) = Na(0) + > vanka(t) Y pravaa = 0( a Véquilibre)  (103)
a=1 A=1

On peut aussi écrire ’énergie libre de Gibbs et ’affinité comme respec-
tivement:

oG
O
I’affinité peut s’apparenter a la notion de force conservatrice vu au premier

semestre. Apres quelques calculs, on trouve énergie libre de Gibbs de la
réaction comme:

oG .
AaG = = Z HAUAVq A % = (104)
0.

AuG = AgH — TA,S (105)

Le sens de la réaction chimique a a température T' et pression p constante est
déterminé par le signe de I’énergie libre de Gibbs de la réaction chimique.
On peut aussi écrire ’enthalpie de la réaction et la chaleur de réaction:

0A.G

AH=-T
oT

=TAS = Q, (106)
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8.2 Bilan de matiere et quantités molaires

On peut écrire le bilan énergétique de matiére comme
s n
> waNa=1Ic - (107)
A=1 a=1

pour un systeme ouvert. pour un systéeme fermé on aura bien sur le courant de
matiere Ic = 0. La dissipation chimique peut étre définie comme:

d = % >, (108)
S a=1

on peut calculer 'enthalpie d’une réaction en la décomposant en une
séquence de réactions intermédiaires. L’enthalpie de la réaction globale est alors
la somme des enthalpies des réactions considérées:

dH 2 dH dN, X
= > vaaha

AH=""
0, 2= AN, dé,

- (109)
A=1

la loi de Hess nous dit que l'enthalpie d’une réaction chimique globale
est indépendante de l'existence de réactions chimiques intermédiaires. Cette
loi est une conséquence du fait que I'enthalpie est une fonction d’état. On peut
calculer I’enthalpie de formation d’un composé C' en décomposant la réaction
chimique qui le produit en une séquence de réactions intermédiaires.

r+1 r
AyH = Z viaha = hco + Z viaha (110)
A=1 A=1

avec h 4 ’enthalpie molaire.

8.3 Meélange de gaz parfaits

Le potentiel chimique pour un gaz parfait pur puis pour un mélange de
gaz est décrit par:

u(T,p) = p(T.po) + BT (L) pa(T.p,ca) = pa(T,p) + BT In (ca)

Po
(111)
ou cy4 est la concentration de ’espece A dans le mélange. De méme, ’entropie
molaire d’un mélange de gaz peut étre décrit par:

SA(Tapa CA) = SA(Tap) —Rln (CA) (112)

On va définir une constante d’équilibre de la réaction chimique a & température
T et a pression p:

K, = exp ( — %) AZZ:I VaapaTp (113)

36



On peut ensuite définir la loi d’action de masse, ou la loi de Guldberg et
Waage:

K= ][] i (114)

Cette loi peut étre utilisée pour estimer I’énergie libre de Gibbs d’un mélange
a I'aide de mesures des concentrations molaires de ses constituants a 1’équilibre
chimique.

Cette loi pour chaque réaction chimique a entre les substances A dans les
phases a peut alors se généraliser comme:

T

m
Ko = [T [T (eq) (115)
a=1A=1
On peut énoncer ce que nous appellerons la régle des phases qui nous donne
le nombre de degré de liberté du systeme:
f=r—m-n+2 (116)
avec n réactions chimiques a lient les concentrations molaires ¢ des r substances
A dans les m phases «.
8.4 Osmose

Un systeme osmotique est constitué
de 2 sous systemes simples séparés

. . sabl . Membrane
par une paroi semi-perméable immo- osmotique Cellule
bile comme illustré dans la figure i
@31 La cellule contient une solu-

tion de solvant de concentration 1 —
¢ et d'un soluté de concentration

c. ;
o e=0

Pext

Une membrane osmotique est une
membrane permettant de laisser passer le
solvant mais pas le soluté.L’osmose est
le phénomene de diffusion de la matiere
caractérisé par le passage de molécules de
solvant d’une solution vers une autre a travers la membrane osmotique qui sépare
ces deux solutions dont les concentrations en soluté sont différentes. 1’osmose
est due a un déséquilibre des potentiels chimiques entre les 2 systemes. 1’osmose
s’arréte lorsque 1’équilibre chimique est atteint, ainsi la différence finale de pres-
sion entre la cellule et le récipient est py — pes¢ qui est la pression osmotique.

Ainsi en utilisant les équations de la partie précédente , on trouvera la
différentiel de potentiel chimique comme:

/J,f(T,])f) - M(T7pext) = cRT (117)

Figure 13: schéma systeme osmo-
tique
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Ainsi il est possible d’écrire la loi de van’t Hoff qui décrit ’équilibre chimique
final:
V(pf — Pext) = cRT (118)

8.5 Electrochimie

Ici, on défini le potentiel électrochimique iy qui généralise le potentiel
chimique pa pour tenir compte de 'énergie électrostatique de la substance
électriquement chargée A. On peut aussi introduire la constante de Far-
raday Fr = — e = 96487C mol~!. Le nombre de Valance z, ou le
nombre d’électrons de Valance est le nombre d’électrons a donner ou re-
tirer a chaque ions afin de les rendre électriquement neutres. Ainsi, le potentiel
électrochimique peut s’écrire comme:

L= p+qp==zFrp (119)

Une réaction électrochimique est une réaction qui transforme une substance
neutre en une substance chargée oxydation, et inversement réduction.
réaction d’oxydation:

Zn — Znt? 4+ 2e (120)

réaction de réduction:
Cu™ — Cu (121)

Il y a 2 types d’électrodes: I’anode ou a lieu 'oxydation, et la catode ou
a lieu la réduction.
On peut écrire la condition d’équilibre électrochimique comme:

> Vaatia =0 (122)
A=1

Ainsi nous pouvons introduire le Potentiel de Nernst:

RT ct
A= () () BT et
U=dp=pl? ¢l = o ln(c_) (123)

Avec ¢ la concentration d’ions Cu?T dans la cellule (+), et ¢~ la concentration
d’ions Cu?* dans la cellule (-).
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9 thermodynamique statistique
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10 thermodynamique des milieux continus
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11 Thermodynamique des processus irréversibles

Grace a la thermodynamique des procédés irréversibles, il sera alors pos-
sible d’unifier les lois phénoménologiques de Fourier, d’Ohm et de Fick en se
basant sur des relations phénoménologiques linéaires. On utilisera alors des
forces et des courants généralisés qui autorise alors les effets croisés.

11.1 Relations phénoménologiques linéaires, réaction chim-
ique et frottement visqueux

Lorsqu’on se concentre sur I’évolution thermodynamique irréversible on
peut écrire les termes de densité de puissance comme le produit de forces
généralisées et de densités de courants généralisés:

1 . )
Us:T<Xi:E]Z‘+2&:Fa']a (124)

ou F; est la force de courant généralisé scalaire, j; est le la densité généralisé
scalaire et F,, est la force généralisé vectorielle. On notera le gradient ther-
mique Fg = —VT et le gradient électrochimique F4 = —Vua — gaVe

Au voisinage d’un état d’équilibre les densités de courants généralisés peu-
vent étre exprimés comme des applications linéaires des forces généralisées:

o5 = 1 (S FLyFy) + Y Fa (Lag - F3)) <0 (126)
ij .

ou [; ; est la composante scalaire et .z est la composante tensorielle.
Ensuite, comme dans la partie nous utiliserons le renversement du
temps T(F;) = ¢;F; avec ¢, = £1. On note le champ magnétique B.
On trouve les Composantes des matrices d’Onsager:

T(Lij(S,{na},q)) = Li;(S,{na},q) (126)

T(LQB(Sa {TLA},q,B) = (Laﬁ(s’ {nA}v%'B) (127)

ce qui est la relations de réciprocité d’Onsager-Casimir.

Les Relations linéaires scalaires nous donnent qu’au voisinage d’un état
d’équilibre local, les forces scalaires F; sont suffisamment petites et les densités
scalaires de courant j; peuvent étre développées au 1°" ordre en termes des
forces Fj : j; = Ej L;;F;. Lorsque 'on a i = a on peut alors écrire I'affinité
chimique et la densité des taux de réaction F, = <7, et j, = w, et lorsque i = f
on a le taux d’expansion et la contrainte scalaire F'y = V - v et j; = 7 alors la
réalisation linéaire scalaires nous donne:

wa:ZLabQ{+Lafv~’U T:ZLfbﬁfﬁLLffV"U (128)
b=1 b=1
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On peut alors enfin écrire la matrice d’Onsager comme:

w1 Liv ... Lin Liy o

; I ; : (129)
wn Lui - Lun Lng o,
TfT Lf1 Lfn Lff Vv

En utilisant les relations linéaires vectorielles on peut voir qu’au voisi-
nage d’'un état d’équilibre local, les densités vectorielles de courant j peuvent
étre développées au 1¢" ordre en termes des forces Fjz. Alors:

jo=> Lag-Fs (130)
B

On écrira aussi le Gradient thermique et la densité de courant d’entropie pour
a = s comme Fy = —VT et jg puis le gradient électrochimique et densité de
courant de substance pour « = A comme 4 = —Vpua — qaVy et ja. On écrit
alors les Relations linéaires vectorielles comme:

js=1Les- (=VT)+ > Leg-(~Vup — q5Ve) (131)
B=1

ja=Las- (=VT)+ > Lap-(~Vus —qsVe) (132)
B=1

ce qui nous donne la matrice d’Onsager:

js Lss le e Lsr VT

J1 Lis L ... L1, —Vur — a1V
o= L . (133)

Jr Lys Ly ... Ly _V)U’T - QTv‘p

11.2 Reéactions chimiques et frottement visqueux

Les relations phénoménologiques linéaires scalaires décrivent l'irréversibilité
associée aux réactions chimiques entre les substances dans un milieu continu.
Pour un volume constant, on trouve la relation linéaire scalaire:

n

wa =Y Lap(s,{na},q)% (134)
b=1
et en absence de réaction chimique (w, = 0) on trouve la relation linéaire
scalaire:
T =1(s,na,q)V v (135)

qui lie alors la contrainte mécanique scalaire 7 décrivant le frottement interne
au taux d’expansion V - v a travers la viscosité volumique.
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11.3 Transport

les relations phénoménologiques linéaires vectorielles décrivent l'irréversibilité
associée au transport de chaleur dans un milieu continu. On peut énoncer la loi
de fourrier et I'effet Righi-Leduc respectivement comme:

jo = —k(s,na,)VT  — VT =—r"(s,n4,9)jo (136)

. . B
VT =g (s,n4,q)(jo xB) ot  B= T8Il (137)

On note la diffusivité thermique A = x/c, avec ¢, = g—; la densité de
n

capacité thermique. Dans un métal homogene avec Vi = Of on peut écrire
la loi de Fourier:
Vig =V (—kVT) = —skV>T (138)

On trouve alors I’équation de la chaleur:

0 0?
T = \V*T 1 s =T (w,t) = AT (a, ¢t 1
O AV selon Ox 5 (z,t) )\&62 (z,t) (139)
On va regarder un phénomene de dif-
fusion de chaleur dans une barre .
) I ot initia
comme montré dans la figure[T4 On peut 0 s

écrire la température dans le barreau B i
comime:
Figure 14: diffusion de chaleur dans

T(z,T) = exp _r (140) un barreau de métal
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