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3.1 Paroi fixe, diatherme, imperméable . . . . . . . . . . . . . . . . . 12
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0 Introduction

POUR PLUS TARD, FLEMME
Salut, moi c’est Quentin Gallien, je suis actuellement en MA2 de physique

en me spécialisant en astrophysique et j’ai pris la liberté de vous faire un petit
résumé du cours de thermodynamique de Mr Bréchet. Du coup, je me suis
occupé cette fois ci de tous les chapitres. J’espère que ce document à pu vous
aider et vous servir dans votre apprentissage de la matière. Si vous avez des
critiques sur celui-ci / vu des erreurs / remarqué des imprécisions... n’hésitez
pas à me contacter par mail à l’adresse quentin.gallien@epfl.ch, ou même par
whats’app au numéro +33695641641. So, Good Luck Have Fun!
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1 Système thermodynamique et 1er principe

Avant de commencer, il est bon de rappeler que la physique est en charge de
décrire les phénomènes naturels, c’est donc une science décrivant les phénomènes
réelles. Vous pouvez donc parfaitement utiliser vos expériences personnels afin
de vous représenter les phénomènes que nous allons étudier dans ce cours.

1.1 Les systèmes thermodynamiques

Pour rappel, un système physique est l’ensemble de la matière et du rayonnement
contenu dans une région de l’espace délimité de l’environnement par une enceinte
(pas forcément physique). Un système peut être:

• Ouvert: permet l’échange de matière avec l’environnement

• Fermé: ... l’inverse

• Diatherme: permet échange de chaleur avec l’environnement

• Adiabatique: ... l’inverse

• déformable: ... c’est dans le nom, permet variation de volume

• isolé: pas d’interaction avec l’environnement

en ce qui concerne les parois de ces systèmes, c’est vraiment pareil en fait.
Notons tout de même qu’une paroi perméable peut laisser passer de la matière
( ̸= imperméable).

1.2 Quelques définitions importantes

• Échelle microscopique : échelle des atomes, particules, ions... (en gros
c’est petit)

• Échelle macroscopique : échelle ou la matière constitue un milieu con-
tinu: un humain, une fourmi, une planète ... en gros c’est grand

• Système ouvert : l’enceinte du système permet un échange de matière
avec l’environnement, en opposition à un système fermé.

• Système adiabatique : pas d’échange de chaleur entre le système et
l’extérieur.

• Système isolé : le système ne permet pas d’interactions avec l’extérieur
(pas d’échange d’énergie ni de matière permis avec l’extérieur).

• L’état d’un système : caractérisé par ses propriétés physiques et décrites
par ses variables d’état.
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• Variables d’état : variables d’état {X1,X2, . . . } des fonctions d’état
F (X1,X2, . . . ) servant à décrire une propriété physique. Ce sont des
paramètres mesurables qui rendent compte de l’état du système. par ex-
emple: la température, pression, volume, quantité de matière...

• Processus de changement d’état : Interaction entre le système et
l’environnement pouvant être mécanique, thermique (transfert de chaleur)
ou chimique (transfert de matière).

1.3 Quelques notions mathématiques :

1) Dérivée partielle :

∂f(x, y)

∂x
= lim

∆x→0

f(x + ∆x, y) − f(x, y)

∆x
resp. y (1)

On pourrait le définir comme: dériver une fonction par rapport à une
variable (ici x) en considérant les autres comme des constantes.

On définit le gradient de f(x1,x2, ...,xn) comme ∇f tel que :

∇f =


∂f
∂x1
∂f
∂x2

...
∂f
∂xn

 (2)

2) Différentielle de f(x, y) :

df(x1,x2, ...,xn) =

n∑
i=1

∂f(x1,x2, ...,xn)

∂xi
dxi (3)

3) Dérivée temporelle : avec f(x1,x2, ...,xn) = f(x1(t),x2(t), ...,xn(t)):

df(x1,x2, ...,xn)

dt
=

n∑
i=1

∂f(x1,x2, ...,xn)

∂xi

dxi

dt
(4)

4) Le multiplicateur de Lagrange :
Prenons une fonction à plusieurs variables f(x1,x2, ...,xn) et on cherche à
connâıtre ses extremums. Dans le cas où toutes les variables de la fonction
son indépendantes entre elles, il suffit de chercher les points où le gradient
est nul.

Cependant, lorsque les variables dépendent les unes des autres, cette
méthode devient caduque. Dans ce cas, on peut utiliser la méthode du
multiplicateur de Lagrange pour prendre en compte ce qu’on appelle
les contraintes du système.
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Une contrainte est une équation g1(x1,x2, ...,xn) = 0 qui doit être satis-
faite par les variables de la fonction dont on cherche l’extremum.

La méthode du multiplicateur de Lagrange permet de prendre en compte
ces m contraintes en introduisant des coefficients λ1,λ2, ...,λm associés
à chaque équation de contrainte. Ces λ sont des multiplicateurs de La-
grange. Ensuite, on définit une nouvelle fonction L appelée fonction de
Lagrange tel que :

L(x1,x2, ...,xn,λ1,λ2, ...,λm) = f(x1,x2, ...,xn)+

λ1g1(x1,x2, ...,xn) + λ2g2(x1,x2, ...,xn) + ... + λmgm(x1,x2, ...,xn) (5)

La fonction de Lagrange est une fonction qui combine la fonction ini-
tiale f(x1,x2, ...,xn) et une combinaison linéaire des fonctions gi. En-
suite, on calcule le gradient de la fonction de Lagrange et on cherche où
celui-ci s’annule pour trouver les points où la fonction initiale est extrême
sous les contraintes données. Il est important de notre que la contrainte
λgi(x1,x2, ...,xn) = 0 afin de pouvoir trouver les extremums de la fonction
f sans altérer ses propriétés.

Par exemple, on veut trouver le maximum de la fonction f(x1,x2) =
x1 + x2 sous la contrainte g(x1,x2) = x2

1 + x2
2 = 1.

Tout d’abord, formons la fonction de Lagrange :

L(x1,x2,λ) = f(x1,x2) + λg(x1,x2) = x1 + x2 − λ(x2
1 + x2

2 − 1)

Ensuite, calculons le gradient de L :

∇L =
(

∂L
∂x1

, ∂L
∂x2

, ∂L
∂λ

)
=

(
1 − 2λx1, 1 − 2λx2, x2

1 + x2
2 − 1

)
On cherche les points qui annulent le gradient :

1 − 2λx1 = 0, 1 − 2λx2 = 0, x2
1 + x2

2 − 1 = 0

En résolvant ces équations, on a x1 = x2 = 1√
2

et λ = 1√
2
.

Par conséquent, le point (x1,x2) =
(

1√
2
, 1√

2

)
maximise la fonction

f(x1,x2) = x1 + x2 sous la contrainte g(x1,x2) = x2
1 + x2

2 = 1.

1.4 Grandeurs :

Une grandeur extensive est une grandeur (X) dont la valeur pour un système
thermodynamique composé de plusieurs sous-systèmes (Xi) est égale à la somme
des valeurs correspondant à chaque sous systèmes (donc X =

∑
Xi). On y

retrouve par exemple la quantité de matière N = N1 + N2, la masse M ,
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la quantité de mouvement P , le Moment cinétique L, l’énergie E et le
volume V . Cela signifie que si vous avez deux systèmes identiques, la grandeur
extensive totale est la somme des grandeurs de chaque système individuel. Par
exemple, la masse, le volume et la quantité de matière sont des grandeurs ex-
tensives. Pour faire plus simple, pour déterminer si une grandeur est extensive
ou intensive, on se représente ce qui advient de cette grandeur lorsque la taille
du système double (ex: volume). Si la grandeur est extensive, sa valeur double,
alors que si elle est intensive, sa valeur reste inchangée (ex: pression).

Une grandeur densitaire est une grandeur extensive divisée par le volume
ou la masse du système.

Une grandeur intensive est conjuguée à une valeur extensive, en d’autre
terme, c’est la dérivée de l’énergie par rapport à l’une de ces valeurs.
Remarque : une valeur intensive est une grandeur physique qui ne dépend pas
de la quantité de matière ou de la taille du système.

Un système est homogène si ses fonctions d’état scalaires ne dépendent pas
de la position dans le sous système. Il est uniforme si c’est des fonctions d’état
vectorielles.

1.5 Processus:

un système thermodynamique peut interagir avec l’environnement au travers de
processus qui changent son état. Ces processus peuvent être mécaniques via
une déformation, thermiques via un transfert de chaleur ou encore chimiques
via un transfert de de matière.

1.6 Équation bilan:

L’équation bilan décrit l’évolution d’une fonction d’état extensive F dut au
courant IF décrivant le transfert de la fonction d’état F de l’environnement au
système, ainsi que la source ΣF décrivant la variation de la fonction F dans le
système.

Ḟ = IF + ΣF (6)

1.7 Premier principe de la thermodynamique

La première loi de la thermodynamique s’énonce comme:

”Pour tout système, il existe une fonction d’état scalaire et extensive E appelée
énergie. Si le système est isolé, alors l’énergie est conservée.”
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Dans un système isolé on a Ė = 0 et dans un système ouvert on a

Ė = P ext + IW + IQ + IC = IE + ΣE (7)

avec P ext, IW , IQ, IC respectivement les puissances extérieures (ex: liées aux
énergies potentielles et à l’énergie cinétique du système), le courant mécanique,
de chaleur et de matière. Pour rappel, dans un système fermé on a IC = 0,
dans un système adiabatique on a IQ = 0 et pour un système rigide (c’est
à dire qui ne varie pas en terme de volume)on a IW = 0.
En ce qui concerne le moment cinétique L, dans un système isolé ou a
L̇ = 0 mais dans un système en interaction L̇ = M ext avec M ext le moment
de force extérieur tout comme en mécanique.

1.8 Énergie interne

En reprenant notre équation (7), on peut réécrire,

Ė = P ext + IW + IQ + IC (8)

S’il existe un référentiel où le système est au repos, alors on peut écrire:

Ė = U̇ + P ext (9)

Avec U l’énergie interne qui ne dépend que de l’état initial et final du système.
Dans un système isolé, on a alors bien U̇ = 0, mais aussi que la puissance
extérieure est nul alors P ext = 0 dans ce cas, le premier principe (eq 8), devient:

Ė = IW + IQ + IC (10)

Il est alors possible de définir :

Le travail : Wi→f =
∫ f

i
δW =

∫ tf
ti

PW dt

La chaleur : Qi→f =
∫ f

i
δQ =

∫ tf
ti

IQdt

Le travail chimique: Ci→f =
∫ f

i
δC =

∫ tf
ti

ICdt

Dans un système ouvert on a alors :

∆Ui→f = Wi→f + Qi→f + Ci→f (11)

Et dans un système fermé, nous pouvons écrire cette équation sous la forme:

∆Ui→f = δW + δQ = Tds− pdV (12)

Où la seconde partie de l’équation sera expliqué dans le prochain chapitre.
Petit conseil, rappelez vous de vos cours de mécanique. Beaucoup de systèmes

thermodynamiques sont similaires et font appel à vos connaissances de votre
cours de Physique 1.
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2 Entropie et 2ème principe

2.1 Principe 0 de la thermodynamique

Les grandeurs intensives représentent des propriétés phénoménologiques (ob-
servables directement ou mesurables à partir de l’expérience) comme la température
T , la pression p ou le potentiel chimique µ qui sont très souvent utilisés.

Le principe zéro de la thermodynamique est très logique et dit que ”Si deux
systèmes sont en équilibre avec un troisième, alors ces deux systèmes sont en
équilibre entre eux”. Un équilibre thermique est atteint lorsque les températures
sont égales, un équilibre mécanique lorsque les pressions sont égales, et un
équilibre chimique lorsque les potentiels chimiques sot égaux.

Une loi extrêmement utile en thermodynamique est la loi des gaz parfaits:

pV = NRT (13)

où P est la pression [Pa], V le volume [m3], N la quantité de matière [mol],
R = NA kB la constante universelle des gaz parfaits [J · K−1· mol−1], T la
température [K], N le nombre de particules et kB la constante de Boltzmann.

La pression est définie comme l’intensité de la force exercé par unité de sur-
face, c’est a dire p ext = dF ext

dA > 0.

2.2 Second principe de la thermodynamique: L’entropie

Afin de caractériser les transferts de chaleur Q, il faudra utiliser une grandeur
extensive appelée l’entropie S qui décrit les transferts de chaleur par unité de
température [J ·K−1]. Il est alors possible de se représenter l’entropie comme
le niveau de désordre dans le système.

Le Deuxième principe nous dit que dans un système adiabatiquement
fermé: tout processus s’effectue avec un accroissement de l’entropie. On dit
alors qu’il y a production d’entropie.”

L’entropie satisfait 2 conditions: l’entropie est une fonction monotone non
décroissante du temps dans un système adiabatiquement fermé, alors: Ṡ =
ΣS ⩾ 0 avec ΣS le source d’entropie. Pour un système diatherme, on ajoute
le courant d’entropie IS , donc Ṡ = ΣS + IS
Dans un système isolé, l’entropie est maximale lorsque le système est à l’équilibre.

l’évolution d’un système est réversible si l’équation thermodynamique qui
la décrit est invariante par renversement du temps, sinon elle est irréversible.
Le renversement du temps est transformation fondamentale T qui envoie le
temps sur son opposé: T : t → −t. Le renversement du temps est un processus
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satisfait la condition d’évolution du deuxième principe: T(ΣS) ⩾ 0. Un
processus est réversible si ΣS = 0 et est irréversible si ΣS > 0.

2.3 Systèmes simples

Un système simple est un système homogène ayant ses propriétés intensives
identiques en tout point dont l’état est déterminé par l’entropie globale S. On
fait les hypothèses que les déformations et les transferts de matière sont lents et
ne provoquent pas de variation de l’énergie cinétique du système. Les systèmes
sont décrits dans la section 1.1.

On rappelle que les variables intensives sont les fonctions d’état con-
jugués aux variables intensives, c’est à dire: la température T = ∂U

∂S , la pression

p = − ∂U
∂V et le potentiel chimique µA = ∂U

∂NA
.

On peut définir la variation temporelle de l’énergie interne comme:

U̇ = T Ṡ − PV̇ +

r∑
A=1

µAṄA ( = PW + IQ + IC système ouvert simple) (14)

On notera juste ici l’équation bilan de l’entropie: Ṡ =
IQ
T + ΣS

Il est de plus possible d’écrire le courant d’entropie lors d’un transfert de
chaleur réversible comme :

IS =
PQ

T
(15)

Gardez bien en tête que les systèmes thermodynamiques sont en réalité sem-
blables à des systèmes mécaniques et reprennent souvent les mêmes concepts.

La suite de ce chapitre dans le cours de Mr S. Bréchet explicite beaucoup
de systèmes pouvant être très utiles à analyser (à partir de la slide 37) mais qui
n’a je pense pas sa place dans ce résumé et sera alors laissé à la discrétion de
toi cher lecteur!
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3 Thermodynamique de sous systèmes simples

La thermodynamique des systèmes simples ne permet pas de décrire des trans-
ferts irréversibles de chaleur et de matière et des déformations irréversibles.
Nous devons alors diviser le système en sous systèmes simples qui sont car-
actérisées par leur paroi comportant certaines caractéristiques. Leurs états sont
définis par les variables d’état, l’évolution temporelle est caractérisée par les
fonctions d’état et les déformations et transferts sont décrits par les courants et
les puissances.

Avant de commencer à étudier les parois, nous vous conseillons de revoir
rapidement la section 1.1 qui donne les définitions nécessaires.

3.1 Paroi fixe, diatherme, imperméable

En premier lieu, il est possible de se représenter ce système grâce au schéma de
la figure 1:

Figure 1: schéma d’un système à paroi fixe, diatherme et imperméable

Rappelons tout d’abord que l’énergie interne ainsi que l’entropie sont des
variable d’état extensive donc S = S1 +S2 (resp U) ou 1 et 2 désignent les sous
systèmes correspondants. Le système étant isolé, U̇ = 0. Dans chaque sous
systèmes, il est alors possible de noter:

U̇1(S1) = T1(S1)Ṡ1 = I2→1
Q = I1→2

Q (resp 2 ) (16)

et après quelques calculs simples (voir slides 11-13 pour précisions mais il
est bin de le retrouver par sois même au moins une fois), il est alors possible de
trouver:

∂S

∂U1
=

1

T1(U1)
− 1

T2(U2)
= 0 → T1(U1) = T2(U2) (17)

Cela montre alors qu’a l’équilibre, les températures des deux systèmes doivent
être identiques. De plus, La condition d’évolution du deuxième principe im-
plique que le transfert de chaleur dans un système isolé ait lieu du sous-système
le plus chaud au sous-système le plus froid.
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Pour ce système, il est possible d’écrire la Source d’entropie comme:

ΣS =
( 1

T1(S1)
− 1

T2(S2)

)
I2→1
Q ⩾ 0 (18)

Et au voisinage de l’équilibre thermique, la source d’entropie doit être de la
forme quadratique, soit:

ΣS = AQ

( 1

T1(S1)
− 1

T2(S2)

)2

> 0 AQ =
κA

lT1(S1)T2(S2)
(19)

Ou κ est la conductivité thermique, A est l’aire de la paroi et l est l’épaisseur
de celle-ci. On en déduit alors une loi discrète appelée la Loi de Fourier:

κ
A

l

(
T1(S1)T2(S2)

)
(20)

Pour les autres systèmes présentés au cours, nous nous en tiendrons à relever
les points importants sans faire tout un descriptif comme dans la section précédente.

3.2 Paroi mobile, diatherme, imperméable

Le système dont nous parlons ici peut être représenté par la figure 2.

Figure 2: schéma d’un système à paroi mobile, diatherme et imperméable

On rappelle qu’une paroi imperméable veut dire qu’elle ne permet pas d’échange
de matière, alors IC = 0. Nous avons néanmoins des déformations et des trans-
ferts de chaleur, pouvant influer sur l’énergie interne de chaque sous systèmes, ce
qui ce traduit pour un système fermé (conservation de l’énergie interne) comme
ici par l’équation suivante:

P 1→2
W + I1→2

Q = −P 2→1
W − I2→1

Q (21)

On rappelle aussi que l’on peut écrire U̇ = T Ṡ − pV̇ = PW − IQ pour ce
système (cf eq14) .

13



On peut aussi isoler la puissance mécanique P 2→1
W = −p1(S1,V1)V̇1 (resp 2).

Après quelques calculs que vous pourrez retrouver slides 24-25 du cours, nous
trouverons alors que:

∂S

∂V1
=

1

T (U1,V1)

(
p1(U1,V1) − p2(U2,V2)

)
(= 0 à l’équilibre) (22)

Ce qui nous prouve alors bien que l’équilibre mécanique se traduit bien par
le fait que p1(U1,V1) = p2(U2,V2).

La source d’entropie peut ainsi s’écrire comme:

ΣS = Ṡ =
1

T (U1,V1)

(
p1(S1,V1) − p2(S2,V2)

)
V̇1 ⩾ 0 (23)

et en utilisant cette équation et le second principe de la thermodynamique il
vient alors qu’une compression dans un système isolé doit s’effectuer par le
sous-système avec la plus grand pression sur le sous-système avec la plus petite
pression. Au voisinage de l’état d’équilibre mécanique, nous avons alors
(comme dans la partie précédente):

ΣS = AW

(
p1(S1,V1)−p2(S2,V2)

)2

= ξV̇1 > 0 AW =
1

ξT (S1,V1)
> 0 (24)

d’où on tire la loi de Stokes:

p1(S1,V1) − p2(S2,V2) = ξV̇1 (→ p(S,V ) − pext(Sext,Vext) = ξV̇ (25)

Où ξ est le coefficient de frottement thermoélastique de la paroi

3.3 Paroi fixe, diatherme, perméable

Le système étudié dans cette partie peut être représenté par la figure 4.

Figure 3: schéma d’un système à paroi mobile, diatherme et imperméable
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Précisons que le système globale est fermé et isolé. Nous noterons que étant
donné que la paroi est fixe, nous avons ici que P i→j

W = 0 et la paroi perméable

nous dit que Ṅ1 = −Ṅ2.

Nous pouvons écrire l’équation bilan de ce système comme:

Ṅ1 = I1 + ΣS = I1→2 =
I1→2
C

µ1(S1,N1)
(resp 2) (26)

Ainsi par le premier principe de la thermodynamique, il est possible d’écrire
la variation de l’énergie libre U̇ comme:

U̇1(S1,N1) = T (S1,N1)I2→1
S + µ1(S1,N1)I2→1 = I2→1

Q + I2→1
C (27)

On peut alors noter la dérivée temporelle de l’entropie

dS =
1

T (S1,N1)

(
µ2(S2,N2) − µ1(S1,N1)

)
dN1 (28)

Par ailleurs, selon le second principe de la thermodynamique, l’entropie doit
être maximale à l’équilibre, alors ∂S

∂N1
= 0 qui est satisfait lorsque µ1(U1,N1) =

µ2(U2,N2), alors l’équilibre du système requièrent que les potentiels chimiques
des sous-systèmes aient la même valeur à l’équilibre chimique. Ensuite, comme
dans les précédentes sous parties, en calculant la variable ΣS , nous pouvons en
déduire que la condition d’évolution du deuxième principe implique que le trans-
fert de matière ait lieu du sous-système avec le plus grand potentiel chimique
vers le sous-système avec le plus petit potentiel chimique.

Après quelques calculs, nous trouvons rapidement que au voisinage de l’équilibre
chimique, on trouve:

ΣS = AC

(
µ2(S2,N2) − µ1(S1,N1)

)2

> 0 AC =
FA

lT (S1,N1)
(29)

Ou nous trouvons alors la loi de Fick (qui est une loi discrète:

I2→1 = F
A

l

(
µ2(S2,N2) − µ1(S1,N1)

)
(30)

Avec F le coefficient de diffusion de la paroi.

3.4 Paroi mobile, diatherme et perméable

Le système étudié dans cette partie peut être représenté par la figure 4. (Ouai
c’est la même formulation que la partie d’avant mais je fais plus d’effort mdr)

Ici on a alors:

U̇1(S1,V1,N1) = T1(S1,V1,N1)Ṡ1 − p1(S1,V1,N1)V̇1 + µ1(S1,V1,N1)Ṅ1 (31)

Ṡ1 =
1

T1(S1,V1,N1)

(
U̇1(S1,V1,N1) +p1(S1,V1,N1)V̇1−µ1(S1,V1,N1)Ṅ1 (32)
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Figure 4: schéma d’un système à paroi mobile, diatherme et perméable

Ainsi, grâce à l’équation 32 et quelques manipulations similaires, nous pouvons
trouver que pour que les conditions d’équilibre soient satisfaites, il faudrait nous
faudrait:

∂S

∂U1
= 0

∂S

∂V1
= 0

∂S

∂N1
= 0 (33)

Lorsqu’un système comme celui-ci est à l’équilibre, il est alors simultanément
à l’équilibre thermique, mécanique et chimique.

3.5 Applications

Regardons pour commencer un système constitué de 2 blocs superposés

L’énergie interne U est une fonction de la température T et du nombre
N de moles de matière, on peut l’écrire comme U = CV T = 3NRT avec CV la
capacité thermique isochore.

Un système est non simple si il n’existe pas de référentiel par rapport
auquel l’énergie cinétique de translation s’annule.

Par la définition de l’energie vu en cours de mécanique, on peut écrire que
Ė(P1,S1,S2) = P ext = F ext · v1 alors en utilisant de plus la dérivée tem-
porelle de l’énergie interne U̇ = 3NRṪ = F ext · v1 on peut alors écrire le taux
d’accroissement de la température

Ṫ =
F ext · v1

3NR
=

Ė

3NR
> 0 (34)

Figure 5: Schéma du montage con-
stitué de 2 cylindres

Rappelons que dans un système adia-

batiquement fermé, Ṡ = ΣS = Ė
T > 0.

Regardons maintenant un système
constitué de 2 cylindres superposés
en rotation à des vitesses angulaires
différentes.
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On pourra alors exprimer l’énergie du
système comme

E(L1,S1,S2) =
1

2
L1 · ω1 + U(S1,S2)

(35)
Avec L1 le moment cinétique du cylindre
et ω1 la vitesse angulaire relatif du 1er cylindre par rapport au second. En
utilisant la même méthode que dans le premier exemple, on trouvera alors que
le taux d’accroissement de la température s’exprimera comme:

Ṫ =
R1 × F ext) · ω1

3NR
=

Ė(L1,S1,S2)

3NR
> 0 (36)

Le reste des applications utilisent des notions de mécanique ainsi que des
notions de thermodynamique expliqués plus haut dans ce document et
sera donc laissé à faire par l’étudiant.
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4 Potentiels en thermodynamique

4.1 Relations fondamentales

Dans ce chapitre, nous commencerons tout d’abord par vous donner quelques
relations fondamentales pour l’étude de la thermodynamique en prenant comme
point de départ l’équation 14.

On relève alors la relation de Gibbs:

dU = TdS − pdV +

r∑
A=1

µAdNA (37)

On rappelle qu’on peut exprimer la température, la pression et le potentiel
chimique comme:

T =
∂U

∂S
p = −∂U

∂V
µA ==

∂U

∂NA
(38)

Ensuite en intégrant la relation 14 et après quelques simples modifications,
nous obtenons la relation d’euler:

U = TS − pV +

r∑
A=1

µANA (39)

Enfin, en dérivant cette équation et en la comparant à l’équation 14, il est
alors possible de trouver la relation de Gibbs-Duhem:

SdT − V dp +

r∑
A=1

NAdµA = 0 (40)

4.2 Transformations de Legendre

La transformation de Legendre permet de passer d’un potentiel thermody-
namique à un autre en utilisant la transformation de Legendre. En notant
Fonction d’état d’une variable extensive F (X) qui est strictement monotone
et dérivable (bijective et inversible). On note alors la grandeur intensive
conjuguée comme :

Y (X) =
dF (X)

dX
→ Y =

F −G

X
(41)

Où Y (X) est la pente de la tangente de la fonction F (X) au point X. La tan-
gente l’axe des ordonnées à l’origine au point G. La transformée de Legendre
s’écrit alors:

G(Y ) = F (X(Y )) − Y X(Y ) (42)

Pour la suite, on notera Yi(X1 . . . ) = ∂F (X1... )
∂Xi

ce qui simplifiera la notation.
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On défini ensuite la courbure:

∂2G

∂Y 2
i

= −
( ∂2F

∂X2
i

)−1

(43)

4.3 Les potentiels thermodynamiques

En se rappelant des équations 37 et 38, il est possible de calculer ce que nous
allons appeler l’énergie libre F (T ,V , {NA}) qui est la transformée de l’énergie
interne U(S,V , {NA}) par rapport à l’entropie S. On à alors:

F = U − ∂U

∂S
S = U − TS (44)

dF = −SdT − pdV +

r∑
A=1

µAdNA (45)

et on peut alors calculer les variables d’état comme:

S = −∂F

∂T
p = −∂F

∂V
µA ==

∂F

∂NA
(46)

De la même façon, on pourra définir une variable appelée EnthalpieH(S, p, {NA})
qui est la transformée de legendre de U(S,V , {NA}) par rapport au volume V .
On obtient alors:

H = U − ∂U

∂V
V = U + pV (47)

dH = TdS + V dp +

r∑
A=1

µAdNA (48)

et on peut donc calculer les variables d’état comme:

T =
∂H

∂S
V =

∂H

∂p
µA ==

∂H

∂NA
(49)

Enfin, on définira une variable appelée l’énergie libre de GibbsG(T , p, {NA})
qui est la transformée de legendre de U(S,V , {NA}) par rapport au volume V
et à l’entropie S. On obtient alors:

G = U − ∂U

∂S
S − ∂U

∂V
V = U + pV − TS (50)

dG = −SdT + V dp +

r∑
A=1

µAdNA (51)

et on peut donc calculer les variables d’état ainsi:

S = −∂G

∂T
V =

∂G

∂p
µA ==

∂G

∂NA
(52)
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4.4 Équilibre de sous-systèmes couplés à un réservoir

un réservoir (ou bain) peut être compris comme un grand système dont
les variables d’état qui les caractérisent restent fixes lorsqu’ils sont couplés à
un autre système. Par exemple, un réservoir de chaleur aura toujours une
température constante. Un système couplé à un réservoir de chaleur aura alors
une température d’équilibre égale à la température du réservoir. On peut con-
sidérer l’extérieur d’un système comme un réservoir.

En regardant quelques systèmes spécifiques, nous donnerons ici les conclu-
sions auxquelles nous avons pu aboutir. En gros c’est un peu de l’étude de
cas du coup je vous conseillerai d’aller directement voir dans les slides si vous
voulez.

• Si un système rigide et diatherme est maintenu à température constante
à l’aide d’un réservoir de chaleur, l’état d’équilibre mécanique entre ses
sous-systèmes est celui qui minimise l’énergie libre du système.

• Si un système déformable et diatherme est maintenu à pression constante
à l’aide d’un réservoir de travail, et que les transferts de chaleur entre les
sous-systèmes et avec le réservoir de travail ont lieu à entropie constante,
l’état d’équilibre thermique entre ses sous-systèmes est celui qui minimise
l’enthalpie du système.

• Si un système déformable et diatherme est maintenu à température et
pression constantes à l’aide d’un réservoir de chaleur et de travail, l’état
d’équilibre chimique entre ses sous-systèmes est celui qui minimise l’énergie
libre de Gibbs du système.

• La chaleur fournie à un système maintenu ànpression constante par un
réservoir de travail est égale à la différence d’enthalpie entre l’état initial
et l’état final

• Le travail effectué sur un système maintenu à température constante par
un réservoir de chaleur est égal à la différence d’énergie libre entre l’état
initial et l’état final.

• L’apport énergétique de matière fournie à un système maintenu à température
et pression constantes par un réservoir de chaleur et de travail est égal à
la différence d’énergie libre de Gibbs entre l’état initial et l’état final.

4.5 Théorème de Schwartz et relations de Maxwell

Premièrement, le théorème de Schwartz nous dit que pour une fonction
(d’état) continue et dérivable f(x, y) dont les dérivées partielles sont continues
et dérivables, on à alors:

∂

∂x

(∂f(x, y)

∂y

)
=

∂

∂y

(∂f(x, y)

∂x

)
(53)
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Ensuite, en appliquant ce théorème aux potentielles thermodynamiques, on ob-
tient alors les relations de maxwell correspondantes. Par exemple, pour
l’énergie interne U(S,V ) la relation de Schwartz et de maxwell correspondante
sont (respectivement):

∂

∂S

(∂U(S,V )

∂V

)
=

∂

∂V

(∂u(S,V )

∂S

)
et − ∂p(S,V )

∂S
=

∂T (S,V )

∂V
(54)

Il est aussi possible d’utiliser le même principe en utilisant les autres poten-
tielles thermodynamiques vu dans la section 4.3 pour avoir d’autres relations.

Nous noterons simplement ici qu’il existe une relation appelée relation cy-
clique qui est très utile et se déduit de la même façon:

∂x(y, z)

∂x

∂y(x, z)

∂z

∂z(x, y)

∂x
= −1 (55)

Nous vous laisserons voir par vous même les applications de cours directe-
ment dans les slides.
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5 Calorimétrie

Les variables T ,V , p et N peuvent être liés entre elles grâce à 4 lois phénoménologiques:

• la loi de Boyle-Mariotte: pour T = cte et N = cte alors pV = cte

• la loi de Charles: à p = cte et N = cte alors V
T = cte

• la loi de Gay-Lussac: à V = cte et N = cte alors p
T = cte

• la loi d’Avogadro: à p = cte et T = cte alors V
N = cte

enfin, la loi phénoménologique peut alors se traduire par: pV
NT = cte.

5.1 coefficients calorimétriques

Les coefficients calorimétriques sont des coefficients caractérisant la réponse
du système à un transfert réversible de chaleur. On défini alors la capacité
thermique isochore CV représentant la chaleur à fournie pour augmenter
de 1K la température d’un volume V de matière, le coefficient de dilatation
isobare αp représentant l’augmentation du volume V dut à l’augmentation de T
et à p = cte et le Coefficient de compressibilité isotherme χT représentant
la diminution du volume V dut à l’augmentation de p et à T = cte comme:

CV = T
∂S(T ,V )

∂T
αp =

1

V

∂V (T , p)

∂T
χT = − 1

V

∂V (T , p)

∂p
(56)

Si l’on écrit explicitement le courant de chaleur IQ et que l’on utilise les
relations précédentes, on obtient alors que:

IQ = CV Ṫ
αp

χT
T V̇ (57)

Nous pouvons alors écrire la chaleur infinitésimale comme:

δQ = IQdt = TdS(T ,V ) = CV dt +
αp

χT
TdV (58)

Il est intéressant de remarquer les quelques relations suivantes:

CV =
∂U

∂T

∣∣∣
V

Cp = T
∂S(T , p)

∂T
=

∂H

∂T

∣∣∣
P

(59)

Où CV et Cp sont les capacités thermiques isobares et isochores et qui
ont la dimension d’une entropie. On introduit de plus la capacité thermique
molaire cv = CV

N (resp p) et la capacité thermique massique cv∗ = CV

M (resp
p).

22



5.2 Troisième principe de la thermodynamique

Nous commencerons par énoncer le troisième principe de la thermody-
namique: Lorsque la température d’un système homogène formé d’une

seule substance tend vers le zéro absolu, température qui ne saurait

être atteinte, son entropie tend vers zéro.

Cela se traduit par: limT→0 S(T ,V (oup) = 0, or l’entropie peut être traduit
décrite par l’équation suivante pour dV = 0 (ou dp = 0):

S(T ,V ) =

∫ T

0

dS(T ′,V (oup) =

∫ T

0

δQ

T ′ =

∫ T

0

CV (oup)
dT ′

T ′ (60)

ce qui nous donne alors par le troisième principe que:

lim
T→0

CV (oup) = 0 (61)

5.3 Relations de Mayer et de Reech

les relations de Mayer et de Reech sont des relations liant la capacités
thermiques isochore CV et la capacités thermiques isobare Cp.

On peut définir le volume infinitésimal ainsi que la chaleur infinitésimale
comme:

dV = α− pV dT − χTV dp δQ = CV dT +
αp

χT
TdV (62)

avec quelques transformations supplémentaires, on trouve alors la relation
de mayer:

Cp − CV =
α2
p

χT
TV (63)

Ainsi que la relation de Reech:

Cp

CV
=

χT

χS
(64)

puis on défini le coefficient gamma qui est le indice adiabatique ou le
coefficient de Laplace que l’on écrit alors comme:

γ =
Cp

CV
=

∂S(T , p)

∂T

(∂S(T , p)

∂T

)−1

=
χT

χS
(65)

ou on aura défini le coefficient de compressibilité isentropique χS =

− 1
V

∂V (S,p)
∂p . On notera aussi que quand le système est indilatable et incom-

pressible
(

α2
p

χT

)
≈ 0, on aura alors que C = Cp = CV .
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5.4 Capacité thermique des solides et gaz parfaits

Nous commencerons par énoncer la loi de Dulong et Petit qui nous dit que a

température suffisamment élevée, la capacité thermique C de nombreux

solides est proportionnelle à la quantité de matière et indépendante

de la température, ce qui se traduit par:

U = CT = 3NRT (66)

On notera aussi les relations suivantes qui sont valables pour les gaz parfaits:

dV = CV dT dH = CpdT (67)

5.5 Coefficients calorimétriques et entropie du gaz parfait

En utilisant les lois et relations que nous avons pu voir dans ce chapitre, nous
pouvons noter la capacité thermique isochore, isobare et l’enthalpie comme:

CV = cNR Cp = (c + 1)NR > 0 H = (c + 1)NRT (68)

Le coefficient gamma peut alors s’écrire γ = c+1
c .

Nous pouvons remarquer plusieurs relations bien utiles dans certains systèmes
spécifiques:

• Dans un processus isentropique à entropie constante (∆Si→f = 0) on
aura TV γ−1 = cte, p1−γT γ = cte, pV γ = cte

• Dans un processus isotherme on a que pV = cte
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6 Transition de phase

6.1 Phase et transition de phase

Figure 6: Schéma de transition de
phase

Il existe plusieurs phases de la matière,
les plus connus sont bien évidemment
les états solides, liquides et gazeux,
mais il existe aussi des phases plus exo-
tiques de la matière comme le plasma,
les supraconducteurs ou les super-
fluides. Toutes ces phases ont des
propriétés physiques différentes. Il est
possible qu’un matériaux change de
phase suite à une transition de phase
(logique) qui traduit une instabilité
pour les conditions subis par le système.

6.2 concavité et convexité
des fonctions d’état

6.2.1 concavité de l’entropie

Il est possible de montrer que l’entropie S
est une fonction concave de U et V dans l’espace d’état (U ,S,V ). Il est possible
de le prouver en utilisant le premier et le second principe de la thermodynamique
(cf directement le cours). On obtient alors les conditions globales de la concavité
pour l’entropie comme:

S(U − ∆U ,V ) + S(U + ∆U ,V ) ⩽ 2S(U ,V ) (69)

Cela vaut pour représenter S en fonction de U mais aussi de la même façon
pour représenter S en fonction de V .

pour décrire des transitions de phase, caractérisées par des discontinuités
des dérivées partielles des variables d’état U , S et V , il est nécessaire de
déterminer également les conditions locales de concavité de l’entropie S. Celles-
ci sont définies au voisinage d’un point de l’espace des états (U ,S,V ). Pour
calculer cela, on procède de la même façon que dans le paragraphe précédent et
on trouve alors les conditions locales de la concavité de l’entropie:

∂2S(U ,V )

∂U2
⩽ 0

∂2S(U ,V )

∂V 2
⩽ 0 (70)

ainsi que la courbure de Gauss de la surface S(U ,V ) (découlant de la con-
dition globale précédente:

∂2S(U ,V )

∂U2

∂2S(U ,V )

∂V 2
−

(∂2S(U ,V )

∂U∂V

)2

⩾ 0 (71)
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6.2.2 convexité de l’énergie interne

La courbure de la fonction d’état entropie S(U ,V ) à volume constant V est
l’opposé de la courbure de la fonction d’état réciproque énergie interne U(S,V )
à volume constant V . Ces fonctions sont symétriques par rapport à la bissectrice
dans le plan (S,U).

En utilisant le relation de Gibbs et la différentielle de l’entropie, on trouve
alors la Condition locale de convexité de l’énergie interne à l’équilibre:

∂2U(S,V )

∂V 2
= −T

∂2S(S,V )

∂V 2
⩾ 0 (72)

ainsi que sa courbure de Gauss positive:

∂2U(S,V )

∂S2

∂2U(S,V )

∂V 2
−

(∂2U(S,V )

∂S∂V

)2

(73)

6.2.3 stabilité et entropie

6.3 Stabilité de l’entropie

Figure 7: Schéma de stabilité locale

La stabilité d’une quantité de matière
dans un certain état dépend du signe
de la courbure de l’entropie S(U ,V ) par
rapport aux variables d’état énergie in-
terne U et volume V dans l’espace des
états (U ,S,V ). La stabilité de l’état
dépend du signe de la dérivée seconde
de l’entropie par rapport à ses variables
d’état. Dans la figure 7, le critère de sta-

bilité locale est donné par ∂2S
∂U2 ≤ 0 et

son critère de stabilité globale est donné
par l’eq (74) ou la courbure globale est
négative ou nulle:

S(U − ∆U ,V ) + S(U + ∆U ,V ) ≤ 2S(U ,V ) (74)

Figure 8: Schéma de coexistence lo-
cale de phase

Il peut aussi y avoir une coexistance
de phase si la courbure de l’entropie
par rapport à l’énergie interne est nulle
comme illustré dans la figure 9, ce qui
peut être décrit par l’équation (75):

S(U ,V ) = λS(U1,V ) + (1 − λ)S(U2,V )
(75)

avec λ ∈ [0.1]
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6.3.1 stabilité et potentiels ther-
modynamiques

La stabilité d’une quantité de matière
dans un certain état dépend du signe de
la courbure de l’énergie interne U(S,V ) par rapport aux variables d’état entropie
S et volume V dans l’espace des états (U ,S,V ). Cela fonctionne exactement
comme ce que nous avons présenté à la partie précédente, mais cette fois on
écrit l’équation de stabilité:

U(S,V ) = λU(S1,V1) + (1 − λ)U(S2,V2) (76)

Figure 9: Schéma de coexistence lo-
cale de phase

Lors de la transition de la phase
α à la phase β, nous avons alors que la
température et la pression sont constante:

T =
∂U(S,V )

∂S
= cte p = −∂U(S,V )

∂V
= cte

(77)
La convexité locale de l’énergie

interne nous indique que:

∂2U

∂S2
=

∂T

∂S
=

T

CV
≥ 0 et (78)

∂2U

∂S2
= − ∂p

∂V
=

1

κSV
≥ 0 (79)

De la même manière, il est aussi pos-
sible de décrire convexité locale de l’enthalpie et de l’énergie libre ainsi
que la courbure de Gausss négative en passant par ces variables. De même
pour la concavité locale de l’énergie libre de Gibbs et sa courbure de
Gauss positive.

On peut alors dire que Les potentiels thermodynamiques U(S,V ),F (T ,V ),H(S, p)
et G(T , p) sont des fonctions convexes de leurs variables d’état extensives V et
S et des fonctions concaves de leurs variables d’état intensives T et p.

Un petit résumé de cette partie peut être fait grâce au tableau 1

U ∂2U
∂S2 convexe ∂2U

∂V 2 convexe

F ∂2F
∂T 2 concave ∂2F

∂V 2 convexe

H ∂2H
∂S2 convexe ∂2H

∂p2 concave

G ∂2G
∂T 2 concave ∂2G

∂p2 concave

Table 1: Critères de stabilité des potentiels thermodynamiques
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6.4 Transitions de phase

Une phase est un état de la matière qui occupe un sous-espace de l’espace
des états caractérisé par des propriétés physiques particulières du système, noté
avec des lettres grecques. Une transition de phase est le passage d’une
phase instable vers une phase stable du système en réponse à un processus.
On peut distinguer 2 types de transitions de phase selon la classification
d’Ehrenfest: les transitions du

. premier ordre caractérisées par des discontinuités des dérivées premières
de l’énergie libre de Gibbs G, donc V et S

. deuxième ordre caractérisées par des discontinuités des dérivées sec-
ondes de l’énergie libre de Gibbs G, donc de κT et Cp.

Figure 10: Schéma de diagramme de
phase

A température T et pression p,
l’état d’équilibre stable minimise G dans
l’espace (G,T , p). Dans l’espace de phase
(G,T , p, {Nα}), l’état d’équilibre stable
minimise G et la phase stable est celle
dont µα est minimale avec

µα(T , p, {Nα}) =
∂G(T , p, {Nα})

∂Nα

Sur un diagramme de phase, comme
représenté sur la figure 10, il est possible
d’observer 2 points particuliers: le point
triple qui est à la limite exacte entre
les états solide, liquide et gazeux, puis le
point critique qui marque la fin de la
courbe de coexistence de phase entre les
états liquides et gazeux.

6.5 Chaleur latente

La chaleur latente est la chaleur fournie à la substance lors d’un processus à
température constante d’un état initial i à un état final f : Qi→f = T∆Si→f .
Alors la chaleur latente de transition de phase (Qα→β)) est la chaleur
fournie lors d’une transition de phase à température constante. On note la
chaleur latente molaire:

lα→β) =
Qα→β)

Nα→β)
= T (sβ − sα) (80)

ou sα = Sα

Nα
est l’entropie molaire (resp β). Vous pouvez vous représenter les

transitions de phase et l’évolution de la température en fonction de l’entropie
grâce à la figure 11.
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Figure 11: diagramme (T,S) représentant les transition de phase de l’eau

En se concentrant sur la coexistence de phase nous disant que µα = µβ , et
de même pour leurs dérivées, on pourra alors trouver la relation de Gidds-
Duhem entre ces phases:

SαdT − Vαdp + Nαdµα = 0 (81)

(resp β). Il serra alors possible d’écrire mathématiquement la pente de la courbe
de coexistence de phase (p,T ):

dp

dT
=

sβ − sα
vβ − vα

(82)

avec vα,β les volumes molaires. On pourra alors réécrire la relation de Clausius-
Clapeyron comme:

dp

dT
=

lsl
T (vl − vs)

et
dp

dT
=

llg
T (vg − vl)

(83)

nous en profitons pour aussi définir la concentration molaire d’une sub-
stance A dans une phase α:

Cα
A =

Nα
A

Nα
tq

r∑
A=1

Cα
A = 1 (84)

Ainsi, il y a r−1 variables indépendantes Cα
A dans chaque phase α. Comme

il y a m phases, il y a donc m(r−1) variables indépendantes Cα
A dans le système.

Les condition d’équilibre chimique impose m − 1 contraintes sur les potentiels
chimiques, il y a alors r(m − 1) contraintes sur le système. On trouve alors la
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règle des phases de Gibbs nous donnant le nombre de degrés de liberté
de notre système:

f = r −m + 2 (85)

avec m le nombre de phases et r le nombre de substances dans notre système.

6.6 Gaz de Van Der Waals

Comme vu précédemment, un gaz parfait idéale peut être décrit grâce à la
célèbre équation pV = NRT , mais la réalité est bien différente, c’est pourquoi
pour décrire un gaz réel on va plutôt utiliser le modèle du gaz de Van Der
Waals (VDW) qui se traduit par l’équation:(

p +
N2a

V 2

)
(V −Nb) = NRT (86)

On rend compte des forces d’attraction entre les atomes et molécules décrites
par le paramètre a > 0 ainsi que du volume occupé par ceux-ci grâce au
paramètre b > 0. On drvras alors aussi redéfinir l’énergie interne du gaz de
VDW comme la somme de l’énergie interne du gaz parfait U∗ et de l’énergie
d’interaction moléculaire aNn:

U = U∗ − aNn = U∗ − aN2

V
(87)

Ainsi on peut aussi écrire la pression du gaz de vdw comme p = p∗ − aN2

V 2 et
son volume comme V = V ∗ + Nb, ce qui nous permet de retrouver l’équation
(86) en réécrivant l’équation d’état: p∗V ∗ = NRT .
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7 Machines thermiques

7.1 Définitions et Rappels

• Machine ditherme : un système constitué d’un fluide qui effectue un
transfert de chaleur entre deux bains thermiques et qui donne lieu à une
déformation ou vis versa.

• Cycle : correspond à un chemin fermé dans un diagramme. Lors d’un
cycle ∆Y = 0 avec Y une fonction d’état quelconque.

• Rappel : un processus adiabatique réversible est isentropique, mais un
processus adiabatique irréversible n’est pas isentropique

• Conventions de signe : Le travail et la chaleur qui entrent dans le
système sont positifs. Ceux qui sortent sont négatifs.

• Processus pour les variations de pression et volume :

– Expansion : augmentation du volume

– Contraction : diminution du volume

– Compression : augmentation de la pression

– Décompression : diminution de la pression

– Détente : augmentation du volume et diminution de la pression

7.2 Cycle de Carnot

Un cycle de Carnot est un un cycle réversible constitué de deux processus
isothermes et deux adiabatiques. On appelle une machine de Carnot une
machine diatherme constitué d’un gaz homogène dans un soufflet fermé mis en
contact avec deux sources à température constantes T− et T+ fonctionnant selon
un cycle réversible de Carnot. Le diagramme d’un cycle de Carnot ressemble
donc à ce qui est représenté sur la figure 12.

On rappellera que dans un processus adiabatique, on a Qi→f = 0. Par
contre, dans les réactions isothermes, on aura:

Q± = Qi→f = T±(S± − S∓) (88)

Et comme nous sommes dans un système isolé et fermé, on aura ∆U =
W + Q = 0. Dans les cycles de Carnot, on notera que la variations d’entropie
∆S = 0.

On défini maintenant un cycle moteur comme un cycle ou la source chaude
fournit de la chaleur à un gaz qui en restitue une partie à la source froide et
utilise l’autre partie pour réaliser un travail sur l’environnement. De la même
façon, un cycle calorifique est un cycle où l’environnement effectue un travail
sur un gaz qui extrait de la chaleur de la source froide (réfrigérateur) et apporte
plus de chaleur à la source chaude (pompe à chaleur).
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Figure 12: schéma d’un cycle de Carnot type

7.3 Processus réversibles pour le gaz parfait

On rappelle que la variation d’énergie interne et la variation d’entropie
peuvent s’écrire dans un cycle comme:

∆Ui→f = cNR(Tf − Ti) ∆Hi→f == (c + 1)NR(Tf − Ti) (89)

On peut donc dire que lorsque la température entre l’état final et initial reste
constante alors la variation de ces deux variables sera alors égale à 0.

Lors d’un processus isotherme réversible, nous pourrons alors noter le
travail WI→f , la chaleur QI→f et la variation d’entropie ∆SI→f comme:

WI→f = −
∫ f

i

pdV = −NRT

∫ Vf

Vi

dV

V
= −NRT ln

Vf

Vi
= −QI→f = −T∆SI→f

(90)
QI→f = ∆UI→f −WI→f (91)

∆SI→f =

∫ f

i

pdV

V
= NR

∫ Vf

Vi

dV

V
= NR ln

Vf

Vi
(92)

Ensuite, pour des processus isobare ou isochore, nous reprendrons les
définitions que nous venons d’utiliser ainsi que l’équation 89 afin de déterminer
certaines propriétés et résultats remarquables applicable aux processus com-
muns dans les cycles.
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7.4 Cycle de Carnot pour le gaz parfait

Nous avons vu dans la figure 12 à quoi ressemblait un diagramme T,S mais il
est aussi possible de construire des diagrammes p,V par exemple. Il est donc
possible de calculer le rapport entre les pentes de ce diagramme. Pour cela, on
rappellera que la dérivée d’une courbe correspond à sa pente au point ou elle
est évaluée. On peut alors poser le rapport des pentes:(∂p(V ,S)

∂V

)(∂p(V ,T )

∂V

)−1

=
χT

χS
=

Cp

CV
= γ > 1 (93)

et nous utiliserons les équations présentés dans la section 7.3 pour mettre en
lien nos différentes variables et ainsi pouvoir connâıtre la forme de la courbe du
diagramme que nous voulons représenter.

Dans un cycle moteur du diagramme pV, le cycle est orienté dans le sens
des aiguilles d’une montre et au contraire, dans un cycle calorifique le cycle est
orienté dans le sens trigonométrique. On appelle machine monotherme une
machine qui n’échangeant de l’énergie par transfert thermique qu’avec un seul
thermostat. Une machine monotherme motrice est impossible à réaliser.
De même, il est impossible de construire une machine ditherme qui extrait
de la chaleur d’une source froide et restitue de la chaleur à une source chaude
sans qu’un travail soit effectué par l’environnement.

7.5 Rendement et efficacités

Afin de caractériser nos machines thermiques, nous allons alors définir le ren-
dement d’une machine ditherme fonctionnant selon un cycle moteur comme le
rapport du processus sortant et du processus entrant dans la machine, c’est à
dire:

η = − W

Q+
=

Q

Q+
(∈ [0; 1]) =

1

ϵ+
(94)

où ϵ+ est l’efficacité de chauffage d’une pompe à chaleur ditherme fonc-
tionnant selon un cycle calorifique est définie comme le rapport du processus
sortant et du processus entrant dans la pompe à chaleur. De même on peut
définir l’efficacité de refroidissement comme:

ϵ− =
Q−

W
= −Q−

Q
=

1 − η

η
(95)

Nous allons encore donner ici quelques résultats utiles pour les cycles de
Carnot. Leur rendement, efficacité de chauffage et de refroidissement
sont alors:

ηC = 1 − T−

T+
ϵ+C =

T+

T+ − T− ϵ−C =
1 − ηC
ηC

=
T−

T+ − T− (96)
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7.6 Cycle de Carnot endoréversible et théorème de Carnot

Un Cycle de Carnot endoréversible est simplement un cycle de Carnot
irréversible. On définit le transfert irréversible de chaleur : Q± entre le
gaz à température maximale (resp minimal) T±

0 et la source chaude (resp froide)
à température T±. Après un temps ∆t± on peut écrire:

Q± =

∫ ∆t±

0

I±Qdt = I±Q∆t± = κ
A

l
(T± − T±

0 ∆t±) (97)

On notera bien évidemment la puissance mécanique |pW | = −W
∆t . Afin de

maximiser la puissance mécanique de ce cycle de Carnot, nous pouvons trouver
les températures optimales T± et donc leur rendement maximal:

T±
0 =

T±

2

(
1 +

√
T∓

T±

)
ηEC = 1 − T−

0

T+
0

= 1 −
√

T−

T+
(98)

Enfin la loi de Carnot nous dit que Le rendement η d’une machine ditherme
quelconque opérant entre une source froide à température T− et une source
chaude à température T+ est inférieur ou égal au rendement ηC du cycle de
Carnot réversible:

η ⩽ ηC = 1 − T−

T+
(99)

Comme d’habitude, je vous encourage à aller voir dans les slides pour les
application de ce chapitre mais je ne pense pas que celles-ci ont leur place dans
un résumé comme celui-ci. Cela vous permettrai de bien comprendre comment
utiliser les différents principes abordés ici.
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8 Chimie et électrochimie

8.1 Potentiel et réactions chimique

Tout d’abord, une réaction chimique est une réaction chimique est une trans-
formation de la matière au cours de laquelle les substances chimiques sont mod-
ifiées. Les substances chimiques initiales sont appelées les réactifs et les sub-
stances finales sont les produits, et l’on peut l’écrire comme cela:

2H2 + O2 ⇌ 2H2O (100)

Prenons une substance électriquement neutre A et son potentiel chim-
ique associé µA. Sans réactions chimiques, ṄA est dut aux transferts de
matière décrite par PC , ce qui n’est pas forcément le cas dans un système avec
des réactions chimiques. On note µ̄A le potentiel électrochimique d’une
substance A chargé électriquement.

Les coefficients stoechiométriques de la réaction chimique 100 sont (νa1, νa2, νa3)
ici
=

(−2,−1, 2). on défini l’avancement infinitésimal comme:

dξa =
dN1

νa1
=

dNr

νar
(101)

L’équilibre est atteinte lorsque dξa = 0. On peut alors introduire le taux de
réaction Ωa = ξ̇a. En gros, on pourra écrire la variation de la quantité d’une
substance A comme:

dNA =

n∑
a=1

νaAdξa ṄA =

n∑
a=1

νaAdΩa (102)

On notera de plus les relations importantes suivantes:

ṄA(t) = NA(0) +

n∑
a=1

νaAξa(t)

r∑
A=1

µAνaA = 0( à l’équilibre) (103)

On peut aussi écrire l’énergie libre de Gibbs et l’affinité comme respec-
tivement:

∆aG ≡ ∂G

∂ξa
=

r∑
A=1

µAµAνaA Aa = − ∂G

∂ξa
(104)

l’affinité peut s’apparenter à la notion de force conservatrice vu au premier
semestre. Après quelques calculs, on trouve énergie libre de Gibbs de la
réaction comme:

∆aG = ∆aH − T∆aS (105)

Le sens de la réaction chimique a à température T et pression p constante est
déterminé par le signe de l’énergie libre de Gibbs de la réaction chimique.

On peut aussi écrire l’enthalpie de la réaction et la chaleur de réaction:

∆aH = −T
∂∆aG

∂T
= T∆aS = Qa (106)
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8.2 Bilan de matière et quantités molaires

On peut écrire le bilan énergétique de matière comme

r∑
A=1

µAṄA = IC −
n∑

a=1

AaΩa (107)

pour un système ouvert. pour un système fermé on aura bien sur le courant de
matière IC = 0. La dissipation chimique peut être définie comme:

∑
S

=
1

T

n∑
a=1

AΩa (108)

on peut calculer l’enthalpie d’une réaction en la décomposant en une
séquence de réactions intermédiaires. L’enthalpie de la réaction globale est alors
la somme des enthalpies des réactions considérées:

∆aH =
dH

dξa

r+p∑
A=1

dH

dNa

dNa

dξa
=

r+p∑
A=1

νaAhA (109)

la loi de Hess nous dit que l’enthalpie d’une réaction chimique globale
est indépendante de l’existence de réactions chimiques intermédiaires. Cette
loi est une conséquence du fait que l’enthalpie est une fonction d’état. On peut
calculer l’enthalpie de formation d’un composé C en décomposant la réaction
chimique qui le produit en une séquence de réactions intermédiaires.

∆fH =

r+1∑
A=1

νfAhA = hC +

r∑
A=1

νfAhA (110)

avec hA l’enthalpie molaire.

8.3 Mélange de gaz parfaits

Le potentiel chimique pour un gaz parfait pur puis pour un mélange de
gaz est décrit par:

µ(T , p) = µ(T , p0) + RT ln
( p

p0

)
µA(T , p, cA) = µA(T , p) + RT ln (cA)

(111)
où cA est la concentration de l’espèce A dans le mélange. De même, l’entropie
molaire d’un mélange de gaz peut être décrit par:

sA(T , p, cA) = sA(T , p) −R ln (cA) (112)

On va définir une constante d’équilibre de la réaction chimique a à température
T et à pression p:

Ka = exp
(
− 1

RT

) r∑
A=1

νaAµATp (113)
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On peut ensuite définir la loi d’action de masse, ou la loi de Guldberg et
Waage:

Ka =

r∏
A=1

cνaA

A (114)

Cette loi peut être utilisée pour estimer l’énergie libre de Gibbs d’un mélange
à l’aide de mesures des concentrations molaires de ses constituants à l’équilibre
chimique.

Cette loi pour chaque réaction chimique a entre les substances A dans les
phases α peut alors se généraliser comme:

Ka =

m∏
α=1

r∏
A=1

(cαA)ν
α
aA (115)

On peut énoncer ce que nous appellerons la règle des phases qui nous donne
le nombre de degré de liberté du système:

f = r −m− n + 2 (116)

avec n réactions chimiques a lient les concentrations molaires cαA des r substances
A dans les m phases α.

8.4 Osmose

Figure 13: schéma système osmo-
tique

Un système osmotique est constitué
de 2 sous systèmes simples séparés
par une paroi semi-perméable immo-
bile comme illustré dans la figure
13. La cellule contient une solu-
tion de solvant de concentration 1 −
c et d’un soluté de concentration
c.

Une membrane osmotique est une
membrane permettant de laisser passer le
solvant mais pas le soluté.L’osmose est
le phénomène de diffusion de la matière
caractérisé par le passage de molécules de
solvant d’une solution vers une autre à travers la membrane osmotique qui sépare
ces deux solutions dont les concentrations en soluté sont différentes. l’osmose
est due à un déséquilibre des potentiels chimiques entre les 2 systèmes. l’osmose
s’arrête lorsque l’équilibre chimique est atteint, ainsi la différence finale de pres-
sion entre la cellule et le récipient est pf − pext qui est la pression osmotique.

Ainsi en utilisant les équations de la partie précédente (8.3), on trouvera la
différentiel de potentiel chimique comme:

µf (T , pf ) − µ(T , pext) = cRT (117)
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Ainsi il est possible d’écrire la loi de van’t Hoff qui décrit l’équilibre chimique
final:

v(pf − pext) = cRT (118)

8.5 Électrochimie

Ici, on défini le potentiel électrochimique µ̄A qui généralise le potentiel
chimique µA pour tenir compte de l’énergie électrostatique de la substance
électriquement chargée A. On peut aussi introduire la constante de Far-
raday FF = −NAe = 96487C mol−1. Le nombre de Valance z, ou le
nombre d’électrons de Valance est le nombre d’électrons à donner ou re-
tirer à chaque ions afin de les rendre électriquement neutres. Ainsi, le potentiel
électrochimique peut s’écrire comme:

µ̄ = µ + qφ = zFFφ (119)

Une réaction électrochimique est une réaction qui transforme une substance
neutre en une substance chargée oxydation, et inversement réduction.

réaction d’oxydation:

Zn → Zn+2 + 2e (120)

réaction de réduction:
Cu+2 → Cu (121)

Il y a 2 types d’électrodes: l’anode où a lieu l’oxydation, et la catode où
a lieu la réduction.

On peut écrire la condition d’équilibre électrochimique comme:

r∑
A=1

νaAµ̄A = 0 (122)

Ainsi nous pouvons introduire le Potentiel de Nernst:

U = ∆φ ≡ φ(+)
e − φ(−)

e =
RT

2FF
ln

(c+
c−

)
(123)

Avec c+ la concentration d’ions Cu2+ dans la cellule (+), et c− la concentration
d’ions Cu2+ dans la cellule (-).
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9 thermodynamique statistique
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10 thermodynamique des milieux continus
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11 Thermodynamique des processus irréversibles

Grâce à la thermodynamique des procédés irréversibles, il sera alors pos-
sible d’unifier les lois phénoménologiques de Fourier, d’Ohm et de Fick en se
basant sur des relations phénoménologiques linéaires. On utilisera alors des
forces et des courants généralisés qui autorise alors les effets croisés.

11.1 Relations phénoménologiques linéaires, réaction chim-
ique et frottement visqueux

Lorsqu’on se concentre sur l’évolution thermodynamique irréversible on
peut écrire les termes de densité de puissance comme le produit de forces
généralisées et de densités de courants généralisés:

σS =
1

T

(∑
i

Fiji +
∑
α

Fα · jα (124)

où Fi est la force de courant généralisé scalaire, ji est le la densité généralisé
scalaire et Fα est la force généralisé vectorielle. On notera le gradient ther-
mique FS = −∇T et le gradient électrochimique FA = −∇µA − qA∇φ

Au voisinage d’un état d’équilibre les densités de courants généralisés peu-
vent être exprimés comme des applications linéaires des forces généralisées:

σS =
1

T

(∑
ij

Fi(LijFj) +
∑
α,β

Fα · (Lαβ · Fβ)
)
⩽ 0 (125)

ou li,j est la composante scalaire et αβ est la composante tensorielle.
Ensuite, comme dans la partie 2.2, nous utiliserons le renversement du

temps T(Fi) = ϵiFi avec ϵi = ±1. On note le champ magnétique B.
On trouve les Composantes des matrices d’Onsager:

T(Lij(S, {nA}, q)) = Lij(S, {nA}, q) (126)

T(Lαβ(S, {nA}, q,B) = (Lαβ(S, {nA}, q, -B) (127)

ce qui est la relations de réciprocité d’Onsager-Casimir.
Les Relations linéaires scalaires nous donnent qu’au voisinage d’un état

d’équilibre local, les forces scalaires Fi sont suffisamment petites et les densités
scalaires de courant ji peuvent être développées au 1er ordre en termes des
forces Fj : ji =

∑
j LijFj . Lorsque l’on a i = a on peut alors écrire l’affinité

chimique et la densité des taux de réaction Fa = Aa et ja = ωa et lorsque i = f
on a le taux d’expansion et la contrainte scalaire Ff = ∇ · v et jf = τ alors la
réalisation linéaire scalaires nous donne:

ωa =

n∑
b=1

 LabA + Laf∇ · v τ =

n∑
b=1

 LfbA + Lff∇ · v (128)
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On peut alors enfin écrire la matrice d’Onsager comme:
ω1

...
ωn

τfr

 =


L11 . . . L1n L1f

...
. . .

...
...

Ln1 . . . Lnn Lnf

Lf1 . . . Lfn Lff




A1

...
An

∇ · v

 (129)

En utilisant les relations linéaires vectorielles on peut voir qu’au voisi-
nage d’un état d’équilibre local, les densités vectorielles de courant j peuvent
être développées au 1er ordre en termes des forces Fβ . Alors:

jα =
∑
β

Lαβ · Fβ (130)

On écrira aussi le Gradient thermique et la densité de courant d’entropie pour
α = s comme Fs = −∇T et js puis le gradient électrochimique et densité de
courant de substance pour α = A comme A = −∇µA − qA∇φ et jA. On écrit
alors les Relations linéaires vectorielles comme:

js = Lss · (−∇T ) +

r∑
B=1

LsB · (−∇µB − qB∇φ) (131)

jA = LAs · (−∇T ) +

r∑
B=1

LAB · (−∇µB − qB∇φ) (132)

ce qui nous donne la matrice d’Onsager:
js
j1
...
jr

 =


Lss Ls1 . . . Lsr

L1s L11 . . . L1r

...
. . .

...
...

Lrs Lr1 . . . Lrr




−∇T
−∇µ1 − q1∇φ

...
−∇µr − qr∇φ

 (133)

11.2 Réactions chimiques et frottement visqueux

Les relations phénoménologiques linéaires scalaires décrivent l’irréversibilité
associée aux réactions chimiques entre les substances dans un milieu continu.
Pour un volume constant, on trouve la relation linéaire scalaire:

ωa =

n∑
b=1

Lab(s, {nA}, q)Ab (134)

et en absence de réaction chimique (ωa = 0) on trouve la relation linéaire
scalaire:

τ = η(s,nA, q)∇ · v (135)

qui lie alors la contrainte mécanique scalaire τ décrivant le frottement interne
au taux d’expansion ∇ · v à travers la viscosité volumique.
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11.3 Transport

les relations phénoménologiques linéaires vectorielles décrivent l’irréversibilité
associée au transport de chaleur dans un milieu continu. On peut énoncer la loi
de fourrier et l’effet Righi-Leduc respectivement comme:

jQ = −κ(s,nA, q)∇T → ∇T = −κ−1(s,nA, q)jQ (136)

∇T = κ−1
RL(s,nA, q)(jQ × B̂) où B̂ =

B

||B||
(137)

On note la diffusivité thermique λ = κ/ce avec ce = ∂u
∂T

∣∣∣
ne

la densité de

capacité thermique. Dans un métal homogène avec ∇κ = 0, on peut écrire
la loi de Fourier:

∇jQ = ∇ · (−κ∇T ) = −κ∇2T (138)

On trouve alors l’équation de la chaleur:

∂tT = λ∇2T selon Ox:
∂

∂t
T (x, t) = λ

∂2

∂x2
T (x, t) (139)

Figure 14: diffusion de chaleur dans
un barreau de métal

On va regarder un phénomène de dif-
fusion de chaleur dans une barre
comme montré dans la figure 14. On peut
écrire la température dans le barreau
comme:

T (x,T ) =
C√
4πλt

exp− x2

4λt
(140)
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